Abstract: We use a local Ricci flow to obtain a bi-Hölder correspondence between non-collapsed (possibly non-complete) 3-manifolds with Ricci curvature bounded from below and Gromov-Hausdorff limits of sequences thereof. This is joint work with Peter Topping and the proofs build on results and ideas from recent papers of Hochard and Topping+Simon.
Abstract: Let $G$ be a locally compact group, $\Gamma$ a discrete subgroup and $C_{G}(\Gamma)$ the commensurator of $\Gamma$ in $G$. The cohomology of $\Gamma$ is a module over the Shimura Hecke ring of the pair $(\Gamma,C_G(\Gamma))$. This construction recovers the action of the Hecke operators on modular forms for $SL(2,\mathbb{Z})$ as a particular case. In this talk I will discuss how the Shimura Hecke ring of a pair $(\Gamma, C_{G}(\Gamma))$ maps into the $KK$-ring associated to an arbitrary $\Gamma$-C*-algebra. From this we obtain a variety of $K$-theoretic Hecke modules. In the case of manifolds the Chern character provides a Hecke equivariant transformation into cohomology, which is an isomorphism in low dimensions. We discuss Hecke equivariant exact sequences arising from possibly noncommutative compactifications of $\Gamma$-spaces. Examples include the Borel-Serre and geodesic compactifications of the universal cover of an arithmetic manifold, and the totally disconnected boundary of the Bruhat-Tits tree of $SL(2,\mathbb{Z})$. This is joint work with M.H. Sengun (Sheffield).
Abstract: The Bergman spaces on a complex domain are defined as the space of holomorphic square-integrable functions on the domain. These carry interesting structures both for analysis and representation theory in the case of bounded symmetric domains. On the other hand, these spaces have some bounded operators obtained as the composition of a multiplier operator and a projection. These operators are highly noncommuting between each other. However, there exist large commutative C*-algebras generated by some of these Toeplitz operators very much related to Lie groups. I will construct an example of such C*-algebras and provide a fairly explicit simultaneous diagonalization of the generating Toeplitz operators.
Abstract: Quantum Airy structures are Lie algebras of quadratic differential operators -- their classical limit describes Lagrangian subvarieties in symplectic vector spaces which are tangent to the zero section and cut out by quadratic equations. Their partition function -- which is the function annihilated by the collection of differential operators -- can be computed by the topological recursion. I will explain how to obtain quantum Airy structures from spectral curves, and explain how we can retrieve from them correlation functions of semi-simple cohomological field theories, by exploiting the symmetries. This is based on joint work with Andersen, Chekhov and Orantin.
Abstract: I will define a non-trivial characteristic class of bundles of 4-manifolds using families of Seiberg-Witten equations. The basic idea of the construction is to consider an infinite dimensional analogue of the Euler class used in the usual theory of characteristic classes. I will also explain how to prove the non-triviality of this characteristic class. If time permits, I will mention a relation between our characteristic class and positive scalar curvature metrics.
Abstract: Gay and Kirby recently generalised Heegaard splittings of 3-manifolds to trisections of 4-manifolds. A trisection describes a 4-dimensional manifold as a union of three 4–dimensional handlebodies. The complexity of the 4–manifold is captured in a collection of curves on a surface, which guide the gluing of the handelbodies. The minimal genus of such a surface is the trisection genus of the 4-manifold. After defining trisections and giving key examples and applications, I will describe an algorithm to compute trisections of 4–manifolds using arbitrary triangulations as input. This results in the first explicit complexity bounds for the trisection genus of a 4–manifold in terms of the number of pentachora (4–simplices) in a triangulation. This is joint work with Mark Bell, Joel Hass and Hyam Rubinstein. I will also describe joint work with Jonathan Spreer that determines the trisection genus for each of the standard simply connected PL 4-manifolds.
Abstract: I will report on new joint work with Leandro Arosio (University of Rome, Tor Vergata). Complex manifolds can be thought of as laid out across a spectrum characterised by rigidity at one end and flexibility at the other. On the rigid side, Kobayashi-hyperbolic manifolds have at most a finite-dimensional group of symmetries. On the flexible side, there are manifolds with an extremely large group of holomorphic automorphisms, the prototypes being the affine spaces $\mathbb C^n$ for $n \geq 2$. From a dynamical point of view, hyperbolicity does not permit chaos. An endomorphism of a Kobayashi-hyperbolic manifold is non-expansive with respect to the Kobayashi distance, so every family of endomorphisms is equicontinuous. We show that not only does flexibility allow chaos: under a strong anti-hyperbolicity assumption, chaotic automorphisms are generic. A special case of our main result is that if $G$ is a connected complex linear algebraic group of dimension at least 2, not semisimple, then chaotic automorphisms are generic among all holomorphic automorphisms of $G$ that preserve a left- or right-invariant Haar form. For $G=\mathbb C^n$, this result was proved (although not explicitly stated) some 20 years ago by Fornaess and Sibony. Our generalisation follows their approach. I will give plenty of context and background, as well as some details of the proof of the main result.
Abstract: Suppose M is a smooth Riemannian manifold on which a Lie group G acts properly and isometrically. In this talk I will explore properties of a particular class of G-invariant operators on M, called G-Callias-type operators. These are Dirac operators that have been given an additional Z_2-grading and a perturbation so as to be "invertible outside of a cocompact set in M". It turns out that G-Callias-type operators are equivariantly Fredholm and so have an index in the K-theory of the maximal group C*-algebra of G. This index can be expressed as a KK-product of a class in K-homology and a class in the K-theory of the Higson G-corona. In fact, one can show that the K-theory of the Higson G-corona is highly non-trivial, and thus the index theory of G-Callias-type operators is not obviously trivial. As an application of the index theory of G-Callias-type operators, I will mention an obstruction to the existence of G-invariant metrics of positive scalar curvature on M.
Abstract: The Artin braid group arise in a number of different parts of mathematics. The goal of this talk will be to explain how basic group-theoretic questions about the Artin braid group can be answered using some modern tools of linear and homological algebra, with an eye toward proving some open conjectures about other groups.
Abstract: In this talk, we will discuss the cobordism maps on periodic Floer homology(PFH) induced by Lefschetz fibration. Periodic Floer homology is a Gromov types invariant for three dimensional mapping torus and it is isomorphic to a version of Seiberg Witten Floer cohomology(SWF). Our result is to define the cobordism maps on PFH induced by certain types of Lefschetz fibration via using holomorphic curves method. Also, we show that the cobordism maps is equivalent to the cobordism maps on Seiberg Witten cohomology under the isomorphism PFH=SWF.
Abstract: Let X be a smooth, compact, oriented 4-manifold and consider the following problem. Let G be a group which acts on the second cohomology of X preserving the intersection form. Can this action of G on H^2(X) be lifted to an action of G on X by diffeomorphisms? We study a parametrised version of Seiberg-Witten theory for smooth families of 4-manifolds and obtain obstructions to the existence of such lifts. For example, we construct compact simply-connected 4-manifolds X and involutions on H^2(X) that can be realised by a continuous involution on X, or by a diffeomorphism, but not by an involutive diffeomorphism for any smooth structure on X.
Abstract: We will define the mass of differential operators L on compact Riemannian manifolds. In odd dimensions, if L is a conformally covariant differential operator, then its mass is also conformally covariant, while in even dimensions, one has a more complicated transformation rule. In the special case that L is the Yamabe operator, its mass is related to the ADM mass of an associated asymptotically flat spacetime. In particular, one expects positive mass theorems in various settings. Here we highlight some recent results.
Abstract: In this talk I will discuss the problem of geometrically quantizing the moduli space of Higgs bundles on a compact Riemann surface using Kahler polarisations. I will begin by introducing geometric quantization via Kahler polarisations for compact manifolds, leading up to the definition of a Hitchin connection as stated by Andersen. I will then describe the moduli spaces of stable bundles and Higgs bundles over a compact Riemann surface, and discuss their properties. The problem of geometrically quantizing the moduli space of stables bundles, a compact space, was solved independently by Hitchin and Axelrod, Del PIetra, and Witten. The Higgs moduli space is non-compact and therefore the techniques used do not apply, but carries an action of C*. I will finish the talk by discussing the problem of finding a Hitchin connection that preserves this C* action. Such a connection exists in the case of Higgs line bundles, and I will comment on the difficulties in higher rank.
Abstract: The classical volume comparison states that under a lower bound on the Ricci curvature, the volume of the geodesic ball is bounded from above by that of the geodesic ball with the same radius in the model space. On the other hand, counterexamples show the assumption on the Ricci curvature cannot be weakened to a lower bound on the scalar curvature, which is the average of the Ricci curvature. In this talk, I will show that a lower bound on a weighted average of the Ricci curvature is sufficient to ensure volume comparison. In the course I will also prove a sharp volume estimate and an integral version of the Laplacian comparison theorem. If time allows, I will also present the Kahler version of the theorem.
Abstract: Given a smooth complex vector bundle over a compact Riemann surface, one can define the space of Higgs bundles and an energy functional on this space: the Yang-Mills-Higgs functional. The gradient flow of this functional resembles a nonlinear heat equation, and the limit of the flow detects information about the algebraic structure of the initial Higgs bundle (e.g. whether or not it is semistable). In this talk I will explain my work to classify ancient solutions of the Yang-Mills-Higgs flow in terms of their algebraic structure, which leads to an algebro-geometric classification of Yang-Mills-Higgs flow lines. Critical points connected by flow lines can then be interpreted in terms of the Hecke correspondence, which appears in Witten’s recent work on Geometric Langlands. This classification also gives a geometric description of spaces of unbroken flow lines in terms of secant varieties of the underlying Riemann surface, and in the remaining time I will describe work in progress to relate the (analytic) Morse compactification of these spaces by broken flow lines to an algebro-geometric compactification by iterated blowups of secant varieties.
Abstract: In 1927 Torsten Carleman proved a remarkable extension of the Stone-Weierstrass theorem. Carleman’s theorem is ostensibly the first result concerning the approximation of functions on unbounded closed subsets of C by entire functions. In this talk we introduce Carleman’s theorem and several of its recent generalisations including the titled generalisation which was proved by the speaker in arXiv:1804.10680.
Abstract: K-theory of C*-algebras associated to a semisimple Lie group can be understood both from the geometric point of view via Baum-Connes assembly map and from the representation theoretic point of view via harmonic analysis of Lie groups. A K-theory generator can be viewed as the equivariant index of some Dirac operator, but also interpreted as a (family of) representation(s) parametrised by the noncompact abelian part in the Levi component of a cuspidal parabolic subgroup. Applying orbital traces to the K-theory group, we obtain the equivariant index as a fixed point formula which, for each K-theory generators for (limit of) discrete series, recovers Harish-Chandra’s character formula on the representation theory side. This is a noncompact analogue of Atiyah-Segal-Singer fixed point theorem in relation to the Weyl character formula. This is joint work with Peter Hochs.
Abstract: We describe the construction of closed prescribed mean curvature (PMC) hypersurfaces using min-max methods. Our theory allows us to show the existence of closed PMC hypersurfaces in a given closed Riemannian manifold for a generic set of ambient prescription functions. This set includes, in particular, all constant functions as well as analytic functions if the manifold is real analytic. The described work is joint with Xin Zhou.
Abstract: We explore the notions of discrete electric and magnetic fluxes introduced by 't Hooft in the late 1970s. After explaining their physics origin, we consider the description in mathematical terminology. We finally study their role in duality.
Abstract: This talk will cover some highlights of the mathematical description of crystal structure from the platonic polyhedra of ancient Greece to the current picture of crystallographic groups as orbifolds. Modern materials synthesis raises fascinating questions about the enumeration and classification of periodic interwoven or entangled frameworks, that might be addressed by techniques from 3-manifold topology and knot theory.
Abstract: Noncommutative geometry provides greater flexibility for studying some problems. This seminar will survey some work on noncommutative principal G-bundles. These were classified for abelian groups some years ago, but nonabelian groups require a different approach, using tools developed for a totally different reason in the 1980s. This uncovers links with ergodic theory, quantum groups and the Yang-Baxter equation.
Abstract: I will survey our current understanding of "quantum symmetries", the mathematical models of topological order, in particular through the formalism of fusion categories. Our very limited classification results to date point to nearly all examples being built out of data coming from finite groups, quantum groups at roots of unity, and cohomological data. However, there are a small number of "exceptional" quantum symmetries that so far appear to be disconnected from the world of classical symmetries as studied in representation theory and group theory. I'll give an update on recent progress understanding these examples.
Abstract: In a series of recent papers, Freed, Hopkins and Teleman put forth a deep result which identifies the twisted K -theory of a compact Lie group G with the representation theory of its loop group LG. Under suitable conditions, both objects can be enhanced to the Verlinde algebra, which appears in mathematical physics as the Frobenius algebra of a certain topological quantum field theory, and in algebraic geometry as the algebra encoding information of moduli spaces of G-bundles over Riemann surfaces. The Verlinde algebra for G with nice connectedness properties have been well-known. However, explicit descriptions of such for disconnected G are lacking. In this talk, I will discuss the various aspects of the Freed-Hopkins-Teleman Theorem and partial results on an extension of the Verlinde algebra arising from a disconnected G. The talk is based on work in progress joint with David Baraglia and Varghese Mathai.
Abstract: In these three talks we give an introduction to Ricci flow and present some applications thereof. After introducing the Ricci flow we present some theorems and arguments from the theory of linear and non-linear parabolic equations. We explain why this theory guarantees that there is always a solution to the Ricci flow for a short time for any given smooth initial metric on a compact manifold without boundary. We calculate evolution equations for certain geometric quantities, and present some examples of maximum principle type arguments. In the last lecture we present some geometric results which are derived with the help of the Ricci flow.