Quantum group actions on rings and equivariant algebraic K-theory

R. B. Zhang University of Sydney

Joint work with Gus Lehrer

R. B. Zhang Equivariant algebraic K-theory of quantum group actions 1/32

イロト イポト イヨト イヨト 二日

 $\mathrm{U}=\mathrm{U}_q(\mathfrak{g})$, a quantum group,

A, a U-module algebra over U, that is, an associative \Bbbk -algebra with a U-action that preserves the algebraic structure of A.

The subspace A^{U} of U-invariants forms a subalgebra.

Describe the structure of the subalgebra $A^{\rm U}$ of invariants: a quantum analogue of the first fundamental theorem of invariant theory for the quantum groups associated with classical Lie algebras was established (joint work with Gus Leher and Hechun Zhang [LZZ11]).

"Higher invariants" of U-module algebras?

- *U*-module algebra $A \iff$ noncommutative space X with *U*-action;
- finitely generated projective *U*-equivariant *A*-module \longleftrightarrow equivariant noncommutative vector bundle on *X*;

K-groups of such quivariant noncommutative vector bundles are invariants of A.

(日) (四) (王) (王) (王)

Equivariant modules

Let \mathfrak{g} be a finite dim'l complex simple Lie algebra. Let $U_q(\mathfrak{g})$ be the quantum group associated with \mathfrak{g} defined over $\Bbbk := \mathbb{C}(q)$, the field of rational functions in q. Then U has the structure of a Hopf algebra.

Example: $U_q(sl_2)$ is generated by $e, f, k^{\pm 1}$ with relations

$$kk^{-1} = k^{-1}k = 1,$$

 $kek^{-1} = q^2e, \quad kfk^{-1} = q^{-2}f,$
 $ef - fe = \frac{k - k^{-1}}{q - q^{-1}}.$

The co-multiplication is given by

$$\begin{split} \Delta(k) &= k \otimes k, \\ \Delta(e) &= e \otimes k + 1 \otimes e, \\ \Delta(f) &= f \otimes 1 + k^{-1} \otimes f. \end{split}$$

R. B. Zhang Equivariant algebraic K-theory of quantum group actions 4/32

Back to an arbitrary quantum group $U = U_q(\mathfrak{g})$. For any $x \in U$, write co-multiplication $\Delta(x)$ as

$$\Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}.$$

An associative algebra A is a module algebra over U if A is a U-module, and the algebraic structure is preserved by the action in the sense that, for all $a, b \in A$ and $x \in U$,

$$x \cdot (ab) = \sum_{(x)} (x_{(1)} \cdot a)(x_{(2)} \cdot b),$$
$$x \cdot 1 = \epsilon(x)1.$$

Here $\epsilon : U \longrightarrow \Bbbk$ is the counit.

・ロト ・四ト ・ヨト ・ヨト - ヨ

A U-equivariant A-module (or A-U-module) M is

- an A-module, $\phi: A \otimes M \longrightarrow M$,
- a U-module, $\mu : U \otimes M \longrightarrow M$,
- the two module structures are compatible in the sense that the following diagram commutes

$$\begin{array}{ccc} \mathrm{U}\otimes(A\otimes M) & \stackrel{\mathrm{id}\otimes\phi}{\longrightarrow} & \mathrm{U}\otimes M\\ & \mu'\downarrow & & \mu\downarrow\\ & A\otimes M & \stackrel{\phi}{\longrightarrow} & M,\\ \end{array}$$
 where μ' is the U-module structure map of $A\otimes_{\Bbbk} M$

$$x \otimes (a \otimes m) \quad \mapsto \quad \sum_{(x)} x_{(1)} \cdot a \otimes x_{(2)} m$$

A morphism between two *A*-U-modules is a map which is both *A*-linear and U-linear.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- ► A-U-mod, the category of locally U-finite A-U-modules. [A U-module V is locally finite if dim Uv < ∞ for any v ∈ V. Locally finite U-modules are semi-simple.]</p>
- ► M(A, U), the full subcategory of A-U-mod consisting of finitely A-generated objects.
- ▶ P(A, U), the full subcategory of A-U-mod consisting of finitely generated projective objects.

Hereafter we fix a *locally finite* U-module algebra A.

Set $V_A = A \otimes_{\mathbb{k}} V$ for any finite dimensional U-module V. Let A act on V_A by left multiplication, and let U act by

$$x(a \otimes v) = \sum_{(x)} x_{(1)} \cdot a \otimes x_{(2)} v$$
for all $a \in A$, $v \in V$ and $x \in U$.

Call V_A a free *A*-U-module of finite rank. Facts:

- 1. V_A belong to $\mathcal{M}(A, U)$.
- 2. For each object M of $\mathcal{M}(A, U)$, there exists a V_A and surjection $V_A \to M$ in $\mathcal{M}(A, U)$.

Choose any finite set of A-generators for M in $\mathcal{M}(A, U)$. The U-module V generated by the set must be finite dimensional because of the local U-finiteness of M. Let $V_A = A \otimes_{\Bbbk} V$. Then the A-U-map $V_A \longrightarrow M$, $a \otimes v \mapsto av$, is surjective.

(ロ) (同) (目) (日) (日) (の)

Splitting Lemma

Let $0 \longrightarrow M' \longrightarrow M \xrightarrow{p} M'' \longrightarrow 0$ be a short exact sequence in *A*-U-**mod** where M'' is an object of $\mathcal{M}(A, U)$. If the exact sequence is *A*-split, then it is also split as an exact sequence of *A*-U-modules.

Proof.

Facts: For any A-U-modules W and N, there is a U-action on $\operatorname{Hom}_{\mathcal{A}}(W, N)$ defined for any $x \in U$ and $f \in \operatorname{Hom}_{\mathcal{A}}(W, N)$ by $(xf)(m) = \sum_{(x)} x_{(2)} f(S^{-1}(x_{(1)})m), \quad \forall m \in W.$

If $W \in \mathcal{M}(A, U)$, and N is locally U-finite, then $\operatorname{Hom}_{A}(W, N)$ is a semi-simple U-module.

The sequence $\operatorname{Hom}_{A}(M'', M) \xrightarrow{p \circ -} \operatorname{Hom}_{A}(M'', M'') \longrightarrow 0$ is exact, and $p \circ -$ is a U-map. Both U-modules in the sequence are semi-simple, $\operatorname{Hom}_{A-U}(M'', M) \xrightarrow{p \circ -} \operatorname{Hom}_{A-U}(M'', M'') \longrightarrow 0$ is exact. Thus any pre-image of $\operatorname{id}_{M''}$ splits the original exact sequence of A-U-modules.

Corollary

The following conditions are equivalent for an object P of $\mathcal{M}(A, U)$:

- 1. P is projective as an A-module;
- 2. P is a projective object of A-U-mod;
- 3. *P* is a direct summand of $V_A := A \otimes_{\Bbbk} V$ with dim $V < \infty$.

(ロ) (同) (E) (E) (E)

Theorem $\mathcal{P}(A, U)$ is an exact category.

Thus Quillen's K-groups $K_i(\mathcal{P}(A, U))$ are defined.

Definition

Let $K_i^U(A) := K_i(\mathcal{P}(A, U))$ for i = 0, 1, ..., and call them the U-equivariant algebraic K-groups of the U-module algebra A.

Exact category.

An exact category \mathcal{M} is an additive category with a class **E** of short exact sequences which satisfies a series of axioms.

May think of an exact category \mathcal{M} as a full (additive) subcategory of an abelian category \mathcal{A} which is closed under extensions in \mathcal{A} , that is, if $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is exact in \mathcal{A} and M'and M'' are in \mathcal{M} , then M also belongs to \mathcal{M} .

Typical examples of exact categories:

(1). any abelian category with the exact structure given by all the short exact sequences;

(2). the full subcategory of finitely generated projective (left) modules of the category of (left) modules over a ring.

A functor $F : \mathcal{M} \longrightarrow \mathcal{M}'$ between two exact categories $(\mathcal{M}, \mathbf{E})$ and $(\mathcal{M}', \mathbf{E}')$ is called exact if $F(\mathbf{E}) \subset \mathbf{E}'$.

Quillen categories of exact categories.

For a small exact category \mathcal{M} , the Quillen category \mathcal{QM} has the same objects as \mathcal{M} , but with morphisms defined in the following way. Let M and M' be objects in \mathcal{M} and consider all diagrams

$$M \stackrel{j}{\twoheadleftarrow} N \stackrel{i}{\rightarrowtail} M',$$

where *j* is an admissible epimorphism and *i* an admissible monomorphism. An admissible monomorphism (resp. admissible epimorphism) in \mathcal{M} is a map that occurs as the map *i* (resp. *j*) in some member $0 \longrightarrow M_1 \xrightarrow{i} M_0 \xrightarrow{j} M_2 \longrightarrow 0$ of **E**. Two such diagrams are regarded as equivalent if there exists a commutative diagram

A morphism from M to M' in the category \mathfrak{QM} is by definition an equivalence class of these diagrams.

Given a morphism from M' to M'' represented by the diagram

$$M' \stackrel{j'}{\leftarrow} N' \stackrel{i'}{\rightarrowtail} M'',$$

its composition with the morphism from M to M' is the morphism represented by

$$M \stackrel{j \circ p_1}{\leftarrow} N \times_{M'} N' \stackrel{i' \circ p_2}{\rightarrowtail} M'',$$

where $N \times_{M'} N' = \{(n, n') \in N \times N' \mid i(n) = j'(n')\}$ is the fibre product of N and N' over M', and $p_1 : N \times_{M'} N \rightarrow N$ and $p_2 : N \times_{M'} N \rightarrow N'$ are the obvious projections. The Quillen category can be defined for any exact category of which the isomorphism class of objects form a set.

Classifying space of a category.

The classifying space $B(\mathcal{M})$ of a category \mathcal{M} with a set of isomorphism classes of objects is a CW complex whose *p*-cells are in one to one correspondence with sequences in \mathcal{M} of the form

$$X_0 \longrightarrow X_1 \longrightarrow \ldots \longrightarrow X_p$$

such that none of the maps is an identity map. The *p*-cell associated with the above sequence is attached in the obvious way to any cell of smaller dimension that can be obtained by deleting some X_i , and replacing f_i and f_{i+1} by $f_{i+1} \circ f_i$ if $i \neq 0$ or *n*. [One cancels it if the composition of maps leads to an identity.]

Quillen's algebraic K-theory of exact categories.

Quillen's algebraic K-groups of an exact category \mathcal{M} are defined to be the homotopy groups of the classifying space $B(\mathcal{QM})$ of \mathcal{QM} :

$$K_i(\mathcal{M}) = \pi_{i+1}(B(\mathcal{QM})), \quad i = 0, 1, \ldots$$

If $F : \mathcal{M} \longrightarrow \mathcal{N}$ is an exact functor between exact categories, it induces a functor $\mathfrak{Q}F : \mathfrak{Q}\mathcal{M} \longrightarrow \mathfrak{Q}\mathcal{N}$ between the corresponding Quillen categories. This functor then induces a cellular map $B\mathfrak{Q}F : B(\mathfrak{Q}\mathcal{M}) \longrightarrow B(\mathfrak{Q}\mathcal{N})$, which in turn leads to homomorphisms of K-groups

$$F_*: K_i(\mathcal{M}) \longrightarrow K_i(\mathcal{N}), \text{ for all } i.$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Recall that a left Noetherian algebra A is left regular if every finitely generated left A-module has a finite resolution by finitely generated projective A-modules.

Theorem

Assume that the U-module algebra A is left regular. Then every object M in $\mathcal{M}(A, U)$ admits a finite $\mathcal{P}(A, U)$ -resolution.

Proof.

For any object M in $\mathcal{M}(A, U)$, there exists an exact sequence $V_{0,A} \xrightarrow{p_0} M \longrightarrow 0$ in $\mathcal{M}(A, U)$, where $V_{0,A}$ is a free A-U-module. As A is left Noetherian, $ker(p_0)$ belongs to $\mathcal{M}(A, U)$. Same considerations apply, leading inductively to an A-free resolution $\dots \longrightarrow V_{1,A} \longrightarrow V_{0,A} \longrightarrow M \longrightarrow 0$ in $\mathcal{M}(A, U)$. Let d be the projective dimension of M, which is finite because A is

regular. The kernel P of the map $V_{d-1,A} \longrightarrow V_{d-2,A}$ is A-projective, hence belongs to $\mathcal{P}(A, U)$. Thus we arrive at the $\mathcal{P}(A, U)$ -resolution

$$0 \longrightarrow P \longrightarrow V_{d-1,A} \longrightarrow \ldots \longrightarrow V_{1,A} \longrightarrow V_{0,A} \longrightarrow M \longrightarrow 0.$$

(ロ) (同) (目) (日) (日) (の)

Theorem

If the U-module algebra A is left regular, there exist isomorphisms $K_i^{\mathrm{U}}(A) \xrightarrow{\sim} K_i(\mathcal{M}(A, \mathrm{U})), \quad i = 0, 1, 2, \dots$

Proof.

Since A is left regular, it must be left Noetherian. Thus $\mathcal{M}(A, U)$ is an abelian category, which has the natural exact structure consisting of all the short exact sequences. Thus $\mathcal{K}_i(\mathcal{M}(A, U))$ are defined.

The embedding $\mathcal{P}(A, U) \subset \mathcal{M}(A, U)$ satisfies the conditions of Quillen's Resolution Theorem, thus the claim immediately follows.

Let S be a locally finite U-module algebra with a filtration $0 = F_{-1}S \subset F_0S \subset F_1S \subset \dots,$ where $1 \in F_0S$, $\cup_p F_pS = S$ and $F_pS \cdot F_qS \subset F_{p+q}S$. Assume that the filtration is preserved by the U-action. Let $\overline{S} = gr(S)$, $\overline{S}_+ = \bigoplus_{p>0} \overline{S}_p$, $A = F_0S$.

Theorem

Assume that \overline{S} is left Noetherian and A-flat. If $A \ (= \overline{S}/\overline{S}_+)$ has a finite projective \overline{S} -resolution, then there exist the isomorphisms $K_i(\mathcal{M}(A, U)) \xrightarrow{\sim} K_i(\mathcal{M}(S, U)), \quad \forall i = 0, 1, 2, \dots$ If furthermore A is regular, then S is regular, and there exist the isomorphisms $K_i^U(A) \xrightarrow{\sim} K_i^U(S), \quad i = 0, 1, 2, \dots$

The proof for the first part is involved, but that for the second part follows from previous theorem.

V, a finite dim'l U-module. T(V), tensor algebra of V. $I \subset V \otimes_{\mathbb{k}} V$, U-submodule. $\langle I \rangle$, two-sided ideal of T(V) generated by I. Then $\mathbb{k}\{V, I\} := T(V)/\langle I \rangle$ is a U-module algebra. Call $A = \mathbb{k}\{V, I\}$ a quantum symmetric algebra of the U-module V if it has a PBW basis [that is, there exists some basis $\{v_i \mid i = 1, 2, ..., d\}$ of V such that the elements $v^{\mathbf{a}} := v_1^{a_1} v_2^{a_2} \cdots v_d^{a_d}$, with $\mathbf{a} := (a_1, a_2, ..., a_d) \in \mathbb{Z}_+^d$, form a basis of A.].

Theorem

Assume that the quantum symmetric algebra $A = \Bbbk\{V, I\}$ is left Noetherian. Then A is regular, and

 $K_i^{\mathrm{U}}(A) = K_i(\mathrm{U}\operatorname{-\mathbf{mod}}) \quad \text{for all } i \geq 0,$

were U-mod is the category of finite dim'l left U-modules.

(ロ) (同) (E) (E) (E)

A is graded with $A_0 = \Bbbk$. If we can show that A satisfies the conditions of the theorem on equivariant K-groups of filtered algebras, then

1

$$\mathsf{K}^{\mathrm{U}}_{i}(\mathsf{A}) = \mathsf{K}^{\mathrm{U}}_{i}(\Bbbk).$$

We have $K_i^{U}(\mathbb{k}) = K_i(\mathcal{P}(\mathbb{k}, U)).$

Note that $\mathcal{M}(\Bbbk, U)$ is the category of finite dimensional left U-modules, that is U-mod. As $\mathcal{M}(\Bbbk, U)$ is semi-simple, we have $\mathcal{P}(\Bbbk, U) = \mathcal{M}(\Bbbk, U)$.

Thus we only need to show that $A_0 = k$ has a finite projective *A*-resolution.

A quantum symmetric algebra is Koszul as it has a PBW basis [P] by definition. The generalised Koszul complex for $A_0 = \Bbbk$ is a finite free resolution.

Examples: Let R be the universal R-matrix of a quantum group U. Given a finite dimensional U-module V, define the permutation

 $P: V \otimes V \longrightarrow V \otimes V, v \otimes w \mapsto w \otimes v,$ and let $\check{R} = PR$. Then $\check{R} \in \operatorname{End}_{\mathrm{U}}(V \otimes V)$. The \check{R} -matrix has a characteristic polynomial of the form

$$\prod_{i=1}^{k_+} \left(x - q^{\chi_i^{(+)}} \right) \prod_{j=1}^{k_-} \left(x + q^{\chi_i^{(-)}} \right)$$

for some positive integers k_{\pm} , where $\chi_i^{(+)}$ and $\chi_i^{(-)}$ are integers related to eigenvalues of Casimir operators. Let

$$I_{-} = \prod_{i=1}^{k_{+}} \left(\check{R} - q^{\chi_{i}^{(+)}}\right) (V \otimes V), \qquad (1)$$

which is a U-submodule of $V \otimes V$. We set

$$A = \Bbbk \{ V, I_{-} \}.$$

(ロ) (同) (目) (日) (日) (の)

Write $R = \sum_{t} \alpha_t \otimes \beta_t$.

Lemma

Let A, B and C be locally finite U-module algebras. Then

1. $A \otimes_{\Bbbk} B$ forms a locally finite U-module algebra with the multiplication defined for all $a \otimes b, a' \otimes b' \in A \otimes B$ by

$$(a \otimes b)(a' \otimes b') = \sum_t a(\beta_t \cdot a') \otimes (\alpha_t \cdot b)b'.$$

2. $(A \otimes B) \otimes C$ and $A \otimes (B \otimes C)$ are canonically isomorphic as U-module algebras.

Thus given a finite dimensional U-module V, we have a U-module algebra

 $\mathbb{k}\{V, I_{-}\}^{\otimes m}$ for each positive integer *m*.

Theorem

Let V be the natural $U_q(\mathfrak{g})$ -module for $\mathfrak{g} = \mathfrak{sl}_n$, so_n or sp_{2n}. Then $S_q(V^m) := \mathbb{k}\{V, I_-\}^{\otimes m}$ is a quantum symmetric algebra for all m. Furthermore, $S_q(V^m)$ is Noetherian.

The case $\mathfrak{g} = sl_n$ is familiar. The corresponding $S_q(V^m)$ is generated by x_{ij} $(1 \le i \le m, 1 \le j \le n)$ subject to the following relations

$$\begin{aligned} x_{ij}x_{ik} &= q^{-1}x_{ik}x_{ij}, & j < k, \\ x_{ij}x_{kj} &= q^{-1}x_{kj}x_{ij}, & i < k, \\ x_{ij}x_{kl} &= x_{kl}x_{ij}, & i < k, j > l, \\ x_{ij}x_{kl} &= x_{kl}x_{ij} - (q - q^{-1})x_{il}x_{kj}, & i < k, j < l. \end{aligned}$$

$$(2)$$

This is the coordinate algebra of a quantum $m \times n$ matrix.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

For all the $S_q(V^m)$ described in the Theorem,

$$\mathcal{K}^{\mathrm{U}_q(\mathfrak{g})}_i(S_q(V^m))\cong\mathcal{K}_i(\mathrm{U}_q(\mathfrak{g}) ext{-}\mathrm{\mathbf{mod}}), \quad ext{for all } i.$$

In particular, $K_0(U_q(\mathfrak{g})-\mathbf{mod})$ is the Grothendick group of $U_q(\mathfrak{g})$ -mod.

The usual algebraic K-groups of $S_q(V^m)$ are given by

$$K_i(S_q(V^m)) = K_i(\Bbbk),$$
 for all i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Quantum homogenous spaces

Present the quantum group U over $\mathbb{k} = \mathbb{C}(q)$ in terms of the usual generators $\{e_i, f_i, k_i^{\pm 1} | i = 1, 2, ..., r\}$ and standard relations. Matrix elements of the U-representations associated with objects of U-**mod** span a Hopf subalgebra A_g of the finite dual of U. There exist two actions R and L of U on A_g defined by

$$R_x f = \sum_{(f)} f_{(1)} < f_{(2)}, x >, \qquad L_x f = \sum_{(f)} < f_{(1)}, S(x) > f_{(2)}$$

for all $x \in U$ and $f \in A_g$. The actions commute. A_g forms a U-module algebra under either R or L. Let $\Theta \subset \{1, 2, ..., r\}$. Denote by $U_q(\mathfrak{l})$ the Hopf subalgebra of U generated by the elements of $\{k_i^{\pm} \mid 1 \leq i \leq r\} \cup \{e_j, f_j \mid j \in \Theta\}$. Define

$$A = \{ f \in A_{\mathfrak{g}} \mid L_{x}(f) = \epsilon(x)f, \forall x \in U_{q}(\mathfrak{l}) \}.$$
(3)

R. B. Zhang Equivariant algebraic K-theory of quantum group actions 27 / 32

Lemma

The subspace A forms a U-module algebra under the action R. Furthermore, A is (both left and right) Noetherian.

The algebra A is the quantum analogue of the algebra of functions on G/K for a compact connected Lie group G and a closed subgroup K with $\mathfrak{g} = \mathbb{C} \otimes_{\mathbb{R}} \mathcal{L}ie(G)$ and $\mathfrak{l} = \mathbb{C} \otimes_{\mathbb{R}} \mathcal{L}ie(K)$.

Call the noncommutative space determined by the algebra a quantum homogeneous space.

Theorem

There is an abelian group isomorphism

 $K_i^{\mathrm{U}}(A) \cong K_i(\mathrm{U}_q(\mathfrak{l})\operatorname{-mod})$ for each $i \ge 0$,

where $U_q(l)$ -mod is the category of finite dimensional semi-simple left $U_q(l)$ -modules.

イロト イボト イヨト イヨト 二日

Proof of the Theorem

For any object Ξ in $U_q(\mathfrak{l})$ -mod, define

$$\mathcal{S}(\Xi) = \left\{ \zeta \in \Xi \otimes \mathcal{A}_{\mathfrak{g}} \left| \sum_{(x)} (x_{(1)} \otimes L_{x_{(2)}}) \zeta = \epsilon(x) \zeta, \ \forall x \in \mathcal{U}_{q}(\mathfrak{l}) \right\}.$$
(4)

Then $S(\Xi)$ belongs to $\mathcal{M}(A, U)$ with A- and U-actions defined for any $b \in A$, $x \in U$ and $\zeta = \sum v_i \otimes a_i \in S(\Xi)$ by

$$\begin{aligned} b\zeta &= \sum v_i \otimes ba_i, \\ x\zeta &= (\mathrm{id}_{\Xi} \otimes R_x)\zeta = \sum v_i \otimes R_x(a_i). \end{aligned}$$

Theorem

- 1. Let V be the restriction of a finite dimensional U-module to a $U_q(l)$ -module. Then $S(V) \cong V \otimes_k A$ in $\mathcal{M}(A, U)$.
- 2. For any object \equiv in $U_q(l)$ -mod, $S(\equiv)$ belongs to $\mathcal{P}(A, U)$.

Extend (4) to a covariant functor

$$S: U_q(\mathfrak{l})\text{-}\mathbf{mod} \longrightarrow \mathcal{P}(A, \mathbf{U}), \tag{5}$$

which applies to objects of $U_q(I)$ -mod according to (4) and sends a morphism f to $f \otimes id_{A_g}$.

Let $I = \{f \in A | f(1) = 0\}$, which is an ideal of A and forms a $U_q(\mathfrak{l})$ -module algebra under the restriction of the action R. Thus for any U-equivariant A-module M, IM is a $U_q(\mathfrak{l})$ -equivariant A-submodule of M.

For *M* in $\mathcal{M}(A, U)$, let $M_0 = M/IM$. We now have a covariant functor

$$\mathcal{E}: \mathcal{M}(A, \mathbf{U}) \longrightarrow \mathbf{U}_q(\mathfrak{l})$$
-mod,

which sends an object M in $\mathcal{M}(A, U)$ to M_0 , and is defined for morphisms in the obvious way.

We restrict the functor to the full subcategory $\mathcal{P}(A, U)$ to obtain a covariant functor

$$\mathcal{E}_{\mathcal{P}}: \mathcal{P}(A, \mathbf{U}) \longrightarrow \mathbf{U}_{q}(\mathfrak{l})$$
-mod. (6)

Theorem

There are natural isomorphisms $S \circ \mathcal{E}_{\mathcal{P}} \cong id_{\mathcal{P}(A,U)}$ and $\mathcal{E}_{\mathcal{P}} \circ S \cong id_{U_q(\mathfrak{l})-\text{mod}}$, thus the categories $U_q(\mathfrak{l})$ -mod and $\mathcal{P}(A, U)$ are equivalent.

The theorem on the equivariant K-groups of the quantum homogeneous spaces immediately follows from this result.

References

- [BH] Bass, H.; Haboush, W. Some equivariant K-theory of affine algebraic group actions. Comm. Algebra 15 (1987), no. 1-2, 181–217.

[GZ] Gover, A. R.; Zhang, R. B. Geometry of quantum homogeneous vector bundles and representation theory of quantum groups. I. *Rev. Math. Phys.* **11** (1999), no. 5, 533–552.

[LZ] G. I. Lehrer, R. B. Zhang, Quantum group actions on rings and equivaraint algebraic K-theory. Contemporary Mathematics (2012).

[LZZ] G. I. Lehrer, H. Zhang, R. B. Zhang, Quantum group actions on noncommutative algebras and invariant theory. *Communicaions in Math Physics (2011)*.

[M] Montgomery, S. Hopf algebras and their actions on rings, Regional Conference Series in Math. No. 82, Amer. Math. Soc., Providence, R.I. (1993).

[P] S. B. Priddy, Koszul resolutions. Trans. Amer. Math. Soc. 152 (1970) 39-60.

[Q] D. Quillen, Higher algebraic K-theory I. In Algebraic K-theory, I: Higher Ktheories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85147. Lecture Notes in Math., Vol. 341, Springer, 1973.

[Z] R.B. Zhang, Quantum superalgebra representations on cohomology groups of non-commutative bundles. J Pure Applied Algebra 191 (2004), 285314.

R. B. Zhang Equivariant algebraic K-theory of quantum group actions 32 / 32