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A higher supergroup for string theory

Introduction

This research began as a puzzle. Explain this pattern:
I The only normed division algebras are R, C, H and O.

They have dimensions k = 1, 2, 4 and 8.
I The classical superstring makes sense only in dimensions

k + 2 = 3, 4, 6 and 10.
I The classical super-2-brane makes sense only in

dimensions k + 3 = 4, 5, 7 and 11.

The explanation involves ‘higher gauge theory’.
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Introduction

Ordinary gauge theory describes how 0-dimensional particles
transform as we move them along 1-dimensional paths. It is
natural to assign a Lie group element to each path:

•

g

%% •

since composition of paths then corresponds to multiplication:

•

g

%% •

g′

%% •

while reversing the direction corresponds to taking the inverse:

• •

g−1

yy
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The associative law makes the holonomy along a triple
composite unambiguous:

•

g

%% •

g′

%% •

g′′

%% •

So: the topology dictates the algebra!
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Introduction

Higher gauge theory describes the parallel transport not only of
point particles, but also 1-dimensional strings.

For this we must ‘categorify’ the notion of a group!

A ‘2-group’ has objects:

•

g

%% •

but also morphisms:

•

g

%%

g′

99f
��

•
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We can multiply objects:

•

g

%% •

g′

%% •

multiply morphisms:

•

g1

%%

g′1

99f1 ��
•

g2

%%

g′2

99f2 ��
•

and also compose morphisms:

•

g

��g′ //
f

��

g′′

CC
f ′

��

•
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Introduction

Various laws should hold...

again, the topology dictates the algebra.

Just as a group is a monoid where every element has an
inverse, a 2-group is a monoidal category where every object
and every morphism has an inverse.

For higher gauge theory, we really want ‘Lie 2-groups’.

To study superstrings using higher gauge theory, we really want
‘Lie 2-supergroups’.

But to get our hands on these, it’s easiest to start with ‘Lie
2-superalgebras’.
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Lie 2-superalgebras from 3-cocycles

Let’s really start with ‘Lie 2-algebras’.

Roughly, this is a categorified Lie algebra: a category L
equipped with a functor:

[−,−] : L× L→ L,

where the Lie algebra axioms only hold up to isomorphism:

Axiom Lie algebra Lie 2-algebra
Jacobi identity [x , [y , z]] + cyclic = 0 [x , [y , z]] + cyclic ∼= 0

(We’ll not weaken antisymmetry [x , y ] = −[y , x ]: this is called a
semistrict Lie 2-algebra.)
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Lie 2-superalgebras from 3-cocycles

A Lie 2-algebra contains a lot of information: objects,
morphisms, and the isomorphisms weakening the Lie algebra
axioms.

Fortunately, we can distill a Lie 2-algebra down to only four
pieces of data:

Theorem (Baez–Crans)
Up to equivalence, every semistrict Lie 2-algebra is determined
by the quadruple (g, h, ρ, J), where:

I g is a Lie algebra,
I h is a vector space,
I ρ : g→ gl(h) is a representation of g on h,
I J : Λ3g→ h is a 3-cocycle in Lie algebra cohomology.

In short: give me a Lie algebra 3-cocycle, and I’ll give you a Lie
2-algebra, and vice versa.
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Lie 2-superalgebras from 3-cocycles

‘3-cocycle’ in the sense of Lie algebra cohomology, which is
defined using the complex which consists of antisymmetric
p-linear maps at level p:

Cp(g, h) = {ω : Λpg→ h}

We call ω a Lie algebra p-cochain.

This complex has coboundary map d : Cp(g, h)→ Cp+1(g, h)
defined by a long formula.

When dω = 0, we say ω is a Lie algebra p-cocycle.
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Lie 2-superalgebras from 3-cocycles

Remember, we really want Lie 2-superalgebras:
I g is a Lie superalgebra:

I a super vector space:

g = g0 ⊕ g1,

I with a graded-antisymmetric bracket [−,−], satisying the
Jacobi identity up to some signs.

I h is a super vector space: h = h0 ⊕ h1.
I ρ : g→ gl(h) is a homomorphism of Lie superalgebras.
I J : Λ3g→ h is a Lie superalgebra 3-cocycle.

In short: give me a Lie superalgebra 3-cocycle, and I’ll give you
a Lie 2-superalgebra.



A higher supergroup for string theory

Lie 2-superalgebras from 3-cocycles

The Poincaré superalgebra:
I V = Rn−1,1 has a nondegerate bilinear form g.
I Spinor representations of so(n−1,1) are representations

arising from left-modules of Cliff(V ) = TV
vw+wv=2g(v ,w) , since

so(n − 1,1) ↪→ Cliff(V ).

I Let S be such a representation.

I For the right choice of S, there is a symmetric map:

[−,−] : Sym2S → V .

I There is thus a Lie superalgebra siso(n − 1,1) where:

siso(n − 1,1)0 = so(n − 1,1) n V , siso(n − 1,1)1 = S.
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Lie 2-superalgebras from 3-cocycles

Theorem
For spacetimes of dimension n = 3,4,6 and 10, there is a Lie
2-superalgebra superstring(n − 1,1) defined by the quadruple
(g, h, ρ, J) where:

I g = siso(n − 1,1) is the Poincaré superalgebra—the
infinitesimal symmetries of ‘superspacetime’.

I h = R,
I the action ρ is trivial,
I the 3-cocycle J is zero except for:

J(v , ψ, φ) = g(v , [ψ, φ]),

for a translation v and two ‘supertranslations’ ψ and φ.
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Lie 2-superalgebras from 3-cocycles

Why superstring(n − 1,1)?
I The classical superstring only makes sense in dimensions

n = 3, 4, 6 and 10.
I In the physics literature, we see this is because J is a

cocycle only in these dimensions. We can explain this
using division algebras.

I Sati–Schreiber–Stasheff have a theory of connections
valued in Lie 2-algebras. With superstring(n − 1,1), the
background fields look right.

With some work, we can integrate superstring(n − 1,1) to a
‘2-group’.
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2-groups from 3-cocycles

A 2-group is a category G with invertible morphisms, equipped
with a functor called multiplication:

m : G × G → G.

The presence of isomorphisms allow us to weaken the group
axioms:

Axiom Group 2-group
Associativity (xy)z = x(yz) (xy)z ∼= x(yz)

Left and right units 1x = x = x1 1x ∼= x ∼= x1
Inverses xx−1 = 1 = x−1x xx−1 ∼= 1 ∼= x−1x

These isomorphisms then must satisfy some equations of their
own.
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2-groups from 3-cocycles

The analogue of Baez and Crans’ theorem holds:

Theorem (Joyal–Street)
Up to equivalence, every 2-group is determined by the
quadruple (G,H, α, a), where:

I G is a group,
I H is an abelian group,
I α : G→ Aut(H) gives an action of G on H,
I a : G4 → H is a 3-cocycle in group cohomology.

In short: give me a group 3-cocycle, and I’ll give you a 2-group,
and vice versa.
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2-groups from 3-cocycles

‘3-cocycle’ in the sense of group cohomology, which is
defined using the complex of G-equivariant maps:

Cp(G,H) =
{

F : Gp+1 → H | gF (g0, . . . ,gp) = F (gg0, . . . ,ggp)
}

We call F a group p-cochain. This complex has coboundary
map d : Cp(G,H)→ Cp+1(G,H) defined by:

dF (g0, . . . ,gp,gp+1) =

p+1∑
i=0

(−1)iF (g0, . . . , ĝi , . . . ,gp,gp+1).

When dF = 0, we say F is a group p-cocycle.
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2-groups from 3-cocycles

For physics, we really need ‘Lie 2-groups’:
I G and H are Lie groups, α and a are smooth maps.

For the physics of superstrings, we really need ‘Lie
2-supergroups’:

I G and H are ‘Lie supergroups’, α and a are ‘super smooth’.
In short:

I Give me a smooth 3-cocycle a : G4 → H, and I’ll give you a
Lie 2-group.

I Give me a super smooth 3-cocycle a : G4 → H, and I’ll give
you a Lie 2-supergroup.

I But not vice versa: I haven’t defined Lie 2-(super)groups in
general here, I am just using 3-cocycles as a substitute.
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Integrating Lie 2-algebras

So we have a Lie 2-superalgebra, superstring(n − 1,1). But we
want a 2-supergroup. It’s easy to go the other way:

I g is the Lie superalgebra of G,
I h is the Lie superalgebra of H,
I dα : g→ gl(h) gives the induced action of g on h,
I Da : Λ3g→ h comes from differentiating a : G4 → H at 1,

and antisymmetrizing.
Da is still a cocycle. In general, there is a cochain map:

D : Cp(G,H)→ Cp(g, h).
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Integrating Lie 2-algebras

We want to solve the inverse problem. Our 3-cocycle formalism
suggests a way to integrate Lie 2-superalgebras to Lie
2-supergroups:

I integrate g to G,
I integrate h to H,
I integrate the action ρ to an action α of G on H,
I find a cocycle a : G4 → H which somehow integrates

J : Λ3g→ h.
More precisely, we want a cochain map:

∫ : Cp(g, h)→ Cp(G,H)

which is the inverse of differentiation, at least up to chain
homotopy:

D : Cp(G,H)→ Cp(g, h).
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Integrating Lie 2-algebras

It’s not always possible to integrate cocycles, but it is for the
defining cocycle J on the superstring(n − 1,1) Lie
2-superalgebra.

This is because J is supported on the Lie subalgebra
T = V ⊕ S, a nilpotent Lie superalgebra of translations and
supertranslations.
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Integrating Lie 2-algebras

As a warm up, we show how to integrate R-valued cocycles on
any nilpotent Lie algebra n to cocycles on the corresponding
group N, using a technique due to Houard.

In this case exp : n→ N is a diffeomorphism, and gives a notion
of straight lines in N.



A higher supergroup for string theory

Integrating Lie 2-algebras

I Lie algebra cochains ω : Λpn→ R can be identified with
left-invariant differential forms on N.

I We can define left-invariant simplices in N to be
simplices:

[n0, . . . ,np] : ∆p → N,

with the property:

n[n0, . . . ,np] = [nn0, . . . ,nnp].

I We integrate to get Lie group cochains on N:

∫ ω(n0, . . . ,np) =

∫
[n0,...,np]

ω.

I This defines a cochain map by Stokes’ theorem!
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Integrating Lie 2-superalgebras

Now, we move into the world of supermanifolds:
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Integrating Lie 2-superalgebras

Using a beautiful trick, called the functor of points.

Theorem (Balduzzi–Carmeli–Fioresi)
There is a full and faithful functor:

h : SuperManifolds→ Fun(GrassmannAlg,A0-Manifolds).

So: for any supermanifold M and Grassmann algebra A, we get
a manifold h(M)(A) = MA, the A-points of M.

For any map f : M → N of supermanifolds, we get a smooth
map fA : MA → NA, which defines a natural transformation.
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Integrating Lie 2-superalgebras

The functor of points allows us to replace a supermanifold M
with a family of ordinary manifolds MA, and maps f : M → N
with a family of smooth maps fA : MA → NA.

The A-points of a super vector space V are:

VA = A0 ⊗ V0 ⊕ A1 ⊗ V1.
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Integrating Lie 2-superalgebras

The A-points of T are TA = A0 ⊗ T0 ⊕ A1 ⊗ T1.
I T a nilpotent Lie superalgebra⇒ TA a nilpotent Lie

algebra.
I J a 3-cocycle on T ⇒ JA a 3-cocycle on TA.
I TA has a group structure, TA ⇒ T has a supergroup

structure T .
So: we integrate to get ∫ JA and transfer this back to T , defining
∫ J on T .
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Integrating Lie 2-superalgebras

Theorem
∫ J defines a Lie supergroup 3-cocycle on T , which extends to
a Lie supergroup 3-cocycle on SISO(n − 1,1).

Corollary
There is a Lie 2-supergroup Superstring(n − 1,1) integrating
superstring(n − 1,1).
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Integrating Lie 2-superalgebras

Final thoughts:
I We want to do ‘higher gauge theory’ with

Superstring(n − 1,1). This should be related to string
theory, and to the work of Sati–Schreiber–Stasheff.

I There is also a Lie 3-supergroup 2-Brane(n,1) associated
with super-2-branes. The higher gauge theory should be
related to M-theory.

I This talk is based on a paper:

Division algebras and supersymmetry III

coming soon to an n-Category Café near you!
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