A higher supergroup for string theory

John Huerta

http://math.ucr.edu/~huerta

Mathematical Sciences Institute Australian National University

Adelaide 5 September 2011

This research began as a puzzle. Explain this pattern:

- ▶ The only normed division algebras are \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{O} . They have dimensions k = 1, 2, 4 and 8.
- ► The classical superstring makes sense only in dimensions k + 2 = 3, 4, 6 and 10.
- ► The classical super-2-brane makes sense only in dimensions k + 3 = 4, 5, 7 and 11.

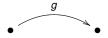
This research began as a puzzle. Explain this pattern:

- ▶ The only normed division algebras are \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{O} . They have dimensions k = 1, 2, 4 and 8.
- ► The classical superstring makes sense only in dimensions k + 2 = 3, 4, 6 and 10.
- ► The classical super-2-brane makes sense only in dimensions k + 3 = 4, 5, 7 and 11.

The explanation involves 'higher gauge theory'.

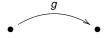
Ordinary gauge theory describes how 0-dimensional particles transform as we move them along 1-dimensional paths. It is natural to assign a Lie group element to each path:

Ordinary gauge theory describes how 0-dimensional particles transform as we move them along 1-dimensional paths. It is natural to assign a Lie group element to each path:



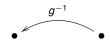
since composition of paths then corresponds to multiplication:

Ordinary gauge theory describes how 0-dimensional particles transform as we move them along 1-dimensional paths. It is natural to assign a Lie group element to each path:

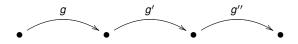


since composition of paths then corresponds to multiplication:

while reversing the direction corresponds to taking the inverse:



The associative law makes the holonomy along a triple composite unambiguous:

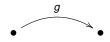


So: the topology dictates the algebra!

For this we must 'categorify' the notion of a group!

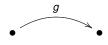
For this we must 'categorify' the notion of a group!

A '2-group' has objects:

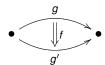


For this we must 'categorify' the notion of a group!

A '2-group' has objects:



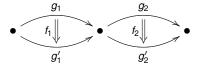
but also morphisms:



We can multiply objects:

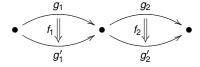
We can multiply objects:

multiply morphisms:

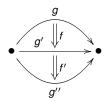


We can multiply objects:

multiply morphisms:



and also compose morphisms:



Various laws should hold...

Just as a group is a monoid where every element has an inverse, a **2-group** is a monoidal category where every object and every morphism has an inverse.

Just as a group is a monoid where every element has an inverse, a **2-group** is a monoidal category where every object and every morphism has an inverse.

For higher gauge theory, we really want 'Lie 2-groups'.

Just as a group is a monoid where every element has an inverse, a **2-group** is a monoidal category where every object and every morphism has an inverse.

For higher gauge theory, we really want 'Lie 2-groups'.

To study *superstrings* using higher gauge theory, we really want 'Lie 2-*supergroups*'.

Just as a group is a monoid where every element has an inverse, a **2-group** is a monoidal category where every object and every morphism has an inverse.

For higher gauge theory, we really want 'Lie 2-groups'.

To study *superstrings* using higher gauge theory, we really want 'Lie 2-*supergroups*'.

But to get our hands on these, it's easiest to start with 'Lie 2-superalgebras'.

Let's really start with 'Lie 2-algebras'.

Roughly, this is a categorified Lie algebra: a category *L* equipped with a functor:

$$[-,-]: L \times L \to L,$$

where the Lie algebra axioms only hold up to isomorphism:

Axiom	Lie algebra	Lie 2-algebra
Jacobi identity	$[x,[y,z]] + \operatorname{cyclic} = 0$	$ [x,[y,z]] + \operatorname{cyclic} \cong 0$

(We'll not weaken antisymmetry [x, y] = -[y, x]: this is called a **semistrict** Lie 2-algebra.)

A Lie 2-algebra contains a lot of information: objects, morphisms, and the isomorphisms weakening the Lie algebra axioms.

Fortunately, we can distill a Lie 2-algebra down to only four pieces of data:

Theorem (Baez-Crans)

Up to equivalence, every semistrict Lie 2-algebra is determined by the quadruple $(\mathfrak{g}, \mathfrak{h}, \rho, J)$, where:

- g is a Lie algebra,
- h is a vector space,
- ▶ ρ : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{h})$ is a representation of \mathfrak{g} on \mathfrak{h} ,
- ▶ $J: \Lambda^3 \mathfrak{g} \to \mathfrak{h}$ is a 3-cocycle in Lie algebra cohomology.

In short: give me a Lie algebra 3-cocycle, and I'll give you a Lie 2-algebra, and vice versa.

'3-cocycle' in the sense of **Lie algebra cohomology**, which is defined using the complex which consists of antisymmetric *p*-linear maps at level *p*:

$$C^{p}(\mathfrak{g},\mathfrak{h})=\{\omega\colon\Lambda^{p}\mathfrak{g}\to\mathfrak{h}\}$$

We call ω a Lie algebra *p*-cochain.

This complex has coboundary map $d: C^p(\mathfrak{g}, \mathfrak{h}) \to C^{p+1}(\mathfrak{g}, \mathfrak{h})$ defined by a long formula.

When $d\omega = 0$, we say ω is a Lie algebra *p*-cocycle.

Remember, we really want Lie 2-superalgebras:

- g is a Lie superalgebra:
 - a super vector space:

$$\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1,$$

- ▶ with a graded-antisymmetric bracket [-, -], satisying the Jacobi identity up to some signs.
- ▶ \mathfrak{h} is a super vector space: $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$.
- ▶ ρ : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{h})$ is a homomorphism of Lie superalgebras.
- ▶ $J: \Lambda^3 \mathfrak{g} \to \mathfrak{h}$ is a Lie superalgebra 3-cocycle.

In short: give me a Lie superalgebra 3-cocycle, and I'll give you a Lie 2-superalgebra.

The Poincaré superalgebra:

- ▶ $V = \mathbb{R}^{n-1,1}$ has a nondegerate bilinear form g.
- ▶ **Spinor representations** of $\mathfrak{so}(n-1,1)$ are representations arising from left-modules of $\mathrm{Cliff}(V) = \frac{TV}{vw+wv=2g(v,w)}$, since

$$\mathfrak{so}(n-1,1) \hookrightarrow \mathrm{Cliff}(V).$$

▶ Let *S* be such a representation.

The **Poincaré superalgebra**:

- ▶ $V = \mathbb{R}^{n-1,1}$ has a nondegerate bilinear form g.
- ▶ **Spinor representations** of $\mathfrak{so}(n-1,1)$ are representations arising from left-modules of $\mathrm{Cliff}(V) = \frac{TV}{vw+wv=2g(v,w)}$, since

$$\mathfrak{so}(n-1,1) \hookrightarrow \mathrm{Cliff}(V).$$

- Let S be such a representation.
- ► For the right choice of *S*, there is a symmetric map:

$$[-,-]: \operatorname{Sym}^2 S \to V.$$

▶ There is thus a Lie superalgebra siso(n-1,1) where:

$$siso(n-1,1)_0 = so(n-1,1) \ltimes V$$
, $siso(n-1,1)_1 = S$.

Theorem

For spacetimes of dimension n=3,4,6 and 10, there is a Lie 2-superalgebra $\mathfrak{superstring}(n-1,1)$ defined by the quadruple $(\mathfrak{g},\mathfrak{h},\rho,J)$ where:

- ▶ g = siso(n-1,1) is the Poincaré superalgebra—the infinitesimal symmetries of 'superspacetime'.
- ightharpoonup $\mathfrak{h}=\mathbb{R},$
- the action ρ is trivial,
- ▶ the 3-cocycle J is zero except for:

$$J(\mathbf{v}, \psi, \phi) = g(\mathbf{v}, [\psi, \phi]),$$

for a translation v and two 'supertranslations' ψ and ϕ .

Why superstring(n-1,1)?

- ▶ The classical superstring only makes sense in dimensions n = 3, 4, 6 and 10.
- ▶ In the physics literature, we see this is because *J* is a cocycle *only in these dimensions*. We can explain this using division algebras.
- ▶ Sati–Schreiber–Stasheff have a theory of connections valued in Lie 2-algebras. With $\mathfrak{superstring}(n-1,1)$, the background fields look right.

Why superstring(n-1,1)?

- ▶ The classical superstring only makes sense in dimensions n = 3, 4, 6 and 10.
- ▶ In the physics literature, we see this is because *J* is a cocycle *only in these dimensions*. We can explain this using division algebras.
- ▶ Sati–Schreiber–Stasheff have a theory of connections valued in Lie 2-algebras. With $\mathfrak{superstring}(n-1,1)$, the background fields look right.

With some work, we can integrate superstring(n-1,1) to a '2-group'.

A **2-group** is a category \mathcal{G} with invertible morphisms, equipped with a functor called **multiplication**:

$$m: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}.$$

The presence of isomorphisms allow us to weaken the group axioms:

Axiom	Group	2-group
Associativity	(xy)z = x(yz)	$(xy)z\cong x(yz)$
Left and right units	1x = x = x1	$1x \cong x \cong x1$
Inverses	$xx^{-1} = 1 = x^{-1}x$	$xx^{-1}\cong 1\cong x^{-1}x$

These isomorphisms then must satisfy some equations of their own.

The analogue of Baez and Crans' theorem holds:

Theorem (Joyal-Street)

Up to equivalence, every 2-group is determined by the quadruple (G, H, α, a) , where:

- G is a group,
- ▶ H is an abelian group,
- ▶ α : $G \rightarrow Aut(H)$ gives an action of G on H,
- ▶ $a: G^4 \to H$ is a 3-cocycle in group cohomology.

The analogue of Baez and Crans' theorem holds:

Theorem (Joyal-Street)

Up to equivalence, every 2-group is determined by the quadruple (G, H, α, a) , where:

- G is a group,
- ▶ H is an abelian group,
- ▶ α : $G \rightarrow Aut(H)$ gives an action of G on H,
- ▶ $a: G^4 \to H$ is a 3-cocycle in group cohomology.

In short: give me a group 3-cocycle, and I'll give you a 2-group, and vice versa.

'3-cocycle' in the sense of **group cohomology**, which is defined using the complex of *G*-equivariant maps:

$$C^p(G,H) = \left\{F \colon G^{p+1} \to H \mid gF(g_0,\ldots,g_p) = F(gg_0,\ldots,gg_p)\right\}$$

We call F a **group** p-cochain. This complex has coboundary map $d: C^p(G, H) \to C^{p+1}(G, H)$ defined by:

$$dF(g_0,\ldots,g_p,g_{p+1})=\sum_{i=0}^{p+1}(-1)^iF(g_0,\ldots,\hat{g}_i,\ldots,g_p,g_{p+1}).$$

When dF = 0, we say F is a group p-cocycle.

For physics, we really need 'Lie 2-groups':

▶ *G* and *H* are Lie groups, α and *a* are smooth maps.

For the physics of superstrings, we really need 'Lie 2-supergroups':

- ▶ G and H are 'Lie supergroups', α and a are 'super smooth'. In short:
 - Give me a smooth 3-cocycle a: G⁴ → H, and I'll give you a Lie 2-group.
 - ▶ Give me a super smooth 3-cocycle $a: G^4 \to H$, and I'll give you a Lie 2-supergroup.

For physics, we really need 'Lie 2-groups':

▶ *G* and *H* are Lie groups, α and *a* are smooth maps.

For the physics of superstrings, we really need 'Lie 2-supergroups':

- ▶ G and H are 'Lie supergroups', α and a are 'super smooth'. In short:
 - Give me a smooth 3-cocycle a: G⁴ → H, and I'll give you a Lie 2-group.
 - ▶ Give me a super smooth 3-cocycle $a: G^4 \to H$, and I'll give you a Lie 2-supergroup.
 - ▶ But not vice versa: I haven't defined Lie 2-(super)groups in general here, I am just using 3-cocycles as a substitute.

So we have a Lie 2-superalgebra, superstring(n-1,1). But we want a 2-supergroup. It's easy to go the other way:

- \triangleright g is the Lie superalgebra of G,
- ▶ f) is the Lie superalgebra of H,
- ▶ $d\alpha$: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{h})$ gives the induced action of \mathfrak{g} on \mathfrak{h} ,
- ▶ Da: $\Lambda^3 \mathfrak{g} \to \mathfrak{h}$ comes from differentiating a: $G^4 \to H$ at 1, and antisymmetrizing.

Da is still a cocycle. In general, there is a cochain map:

$$D \colon C^p(G, H) \to C^p(\mathfrak{g}, \mathfrak{h}).$$

We want to solve the inverse problem. Our 3-cocycle formalism suggests a way to integrate Lie 2-superalgebras to Lie 2-supergroups:

- ▶ integrate g to G,
- ▶ integrate h to H,
- ▶ integrate the action ρ to an action α of G on H,
- ▶ find a cocycle $a: G^4 \to H$ which somehow integrates $J: \Lambda^3 \mathfrak{g} \to \mathfrak{h}$.

More precisely, we want a cochain map:

$$\int : C^p(\mathfrak{g},\mathfrak{h}) \to C^p(G,H)$$

which is the inverse of differentiation, at least up to chain homotopy:

$$D: C^p(G, H) \to C^p(\mathfrak{q}, \mathfrak{h}).$$

It's not always possible to integrate cocycles, but it is for the defining cocycle J on the superstring(n-1,1) Lie 2-superalgebra.

This is because J is supported on the Lie subalgebra $\mathcal{T}=V\oplus S$, a *nilpotent Lie superalgebra* of translations and supertranslations.

As a warm up, we show how to integrate \mathbb{R} -valued cocycles on any nilpotent Lie *algebra* \mathfrak{n} to cocycles on the corresponding group N, using a technique due to Houard.

In this case exp: $\mathfrak{n} \to N$ is a diffeomorphism, and gives a notion of straight lines in N.

- ▶ Lie algebra cochains $\omega : \Lambda^p \mathfrak{n} \to \mathbb{R}$ can be identified with left-invariant differential forms on N.
- We can define left-invariant simplices in N to be simplices:

$$[n_0,\ldots,n_p]\colon \Delta^p\to N,$$

with the property:

$$n[n_0,\ldots,n_p]=[nn_0,\ldots,nn_p].$$

We integrate to get Lie group cochains on N:

$$\int \omega(n_0,\ldots,n_p) = \int_{[n_0,\ldots,n_p]} \omega.$$

► This defines a cochain map by Stokes' theorem!

Now, we move into the world of supermanifolds:

Using a beautiful trick, called the **functor of points**.

Theorem (Balduzzi-Carmeli-Fioresi)

There is a full and faithful functor:

h: SuperManifolds \rightarrow Fun(GrassmannAlg, A_0 -Manifolds).

So: for any supermanifold M and Grassmann algebra A, we get a manifold $h(M)(A) = M_A$, the **A-points** of M.

For any map $f: M \to N$ of supermanifolds, we get a smooth map $f_A: M_A \to N_A$, which defines a natural transformation.

The functor of points allows us to replace a supermanifold M with a family of ordinary manifolds M_A , and maps $f: M \to N$ with a family of smooth maps $f_A: M_A \to N_A$.

The A-points of a super vector space V are:

$$V_A = A_0 \otimes V_0 \oplus A_1 \otimes V_1.$$

The A-points of \mathcal{T} are $\mathcal{T}_A = A_0 \otimes \mathcal{T}_0 \oplus A_1 \otimes \mathcal{T}_1$.

- ➤ T a nilpotent Lie superalgebra ⇒ T_A a nilpotent Lie algebra.
- ▶ J a 3-cocycle on $\mathcal{T} \Rightarrow J_A$ a 3-cocycle on \mathcal{T}_A .
- ▶ T_A has a group structure, $T_A \Rightarrow T$ has a supergroup structure T.

So: we integrate to get $\int J_A$ and transfer this back to T, defining $\int J$ on T.

Integrating Lie 2-superalgebras

Theorem

 $\int J$ defines a Lie supergroup 3-cocycle on T, which extends to a Lie supergroup 3-cocycle on SISO(n-1,1).

Corollary

There is a Lie 2-supergroup Superstring (n-1,1) integrating superstring (n-1,1).

Final thoughts:

- ▶ We want to do 'higher gauge theory' with Superstring(n - 1, 1). This should be related to string theory, and to the work of Sati-Schreiber-Stasheff.
- ► There is also a Lie 3-supergroup 2-Brane(n, 1) associated with super-2-branes. The higher gauge theory should be related to M-theory.

Final thoughts:

- ▶ We want to do 'higher gauge theory' with Superstring(n − 1, 1). This should be related to string theory, and to the work of Sati–Schreiber–Stasheff.
- ► There is also a Lie 3-supergroup 2-Brane(n, 1) associated with super-2-branes. The higher gauge theory should be related to M-theory.
- This talk is based on a paper:

Division algebras and supersymmetry III

coming soon to an n-Category Café near you!