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Outline

1. Exponentiated moment maps

(a) Group-valued moment maps.

(b) The metaplectic representation.

• Weyl’s commutation relations and the Moyal algebra.

• Symplectic automorphisms.

• Tempered implementors.

• The connection with group-valued moment maps.

(c) Reduced spaces
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Born–Heisenberg commutation relations

[Xj , Xk] = 0, [Pj , Pk] = 0, [Xj , Pk] = i~δjk1

W (a, α) := exp(i(a · P − α ·X)/~)
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Weyl’s commutation relations

W (a, α)W (b, β) = ei(a·β−b·α)/2~W (a+ b, α+ β)

Generalisation to locally compact abelian groups V with symplectic form s

and multiplier σ = exp(is(u, v)~)

W (u)W (v) = σ(u, v)W (u+ v)
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The twisted group algebra

For any Haar (Lebesgue) integrable function and, in particular, any Schwartz

function f ∈ S(V ) set

W (f) =

∫
V

f(v)W (v) dv.

Then

W (f1)W (f2) = W (f1 ∗ f2),

where

(f1 ∗ f2)(v) =

∫
V

f1(u)f2(v − u)σ(u, v − u) du

is twisted convolution.

The Clifford/fermion algebra is the twisted group algebra of V = Zn2 with

σ(m,n) = (−1)
∑

i>j minj .
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The Moyal algebra

The classical situation has σ = 1 so that the multiplication is ordinary

convolution and everything commutes. The analogue of W (f) is the Fourier

transform f 7→ f̂ , (which preserves S(V )).

Weyl’s quantisation Q(f̂) = W (f), sends the classical to the quantum

transform.

Q(f̂1 ∗ f2) = W (f1 ∗ f2) = W (f1)W (f2) = Q(f̂1)Q(f̂2)

We set

f̂1 ? f̂2 = f̂1 ∗ f2

to get the Moyal product (a star product).
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The star product expansion

Writing φj = f̂j , we see that φ1 ? φ2 is the Fourier transform of

φ1 ∗ φ2 =

∫
V

e−is(u,v−u)/~f1(u)f2(v − u) du

=

∫
V

f1(u)f2(v − u) du− i

~

∫
V

s(u, v − u)f1(u)f2(v − u) du

− 1

2~2

∫
V

s(u, v − u)2f1(u)f2(v − u) du+ . . .
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The Poisson bracket

φ1 ∗ φ2 =

∫
V

f1(u)f2(v − u) du− i

~

∫
V

s(u, v − u)f1(u)f2(v − u) du+ . . .

The first term is ordinary convolution and has the pointwise product φ1φ2 as

Fourier transform. The multiplications by powers of s(u, v − u) introduce

derivatives −~2s(∂1, ∂2)φ1φ2 and the first two terms become

φ1 ∗ φ2 = φ1φ2 + i~s(∂1, ∂2)φ1φ2 + . . . .

In particular, we get the Moyal commutator

φ1 ∗ φ2 − φ2 = 2i~s(∂1, ∂2)φ1φ2 + . . . = i~{φ1, φ2}+ . . . ,

the dominant term being the Poisson bracket.
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Symplectic automorphisms

Since a symplectic transformation g of V preserves s and the addititive

structure of V the action on a function f

(g.f)(v) = f(g−1v)

preserves the twisted convolution.
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Symplectic implementors

The symplectic automorphisms are not inner, but approximately inner:

There exist tempered distributions Sg ∈ S ′(V ) which are in the multiplier

algebra, i.e. Sg ∗ S(V ) ⊆ S(V ) and S(V ) ∗ Sg ⊆ S(V ), such that

Sg ∗ f = (g.f) ∗ Sg

for all f ∈ S(V ) and g ∈ G = Sp(V, s).
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Algebra homomorphisms

Moreover these can be chosen such that

Sg ∗ Sh = α(g, h)Sgh

for all g, h ∈ Sp(V, s), where α(g, h) = ±1 is a multiplier, which can be

removed by going to the central extension which it defines, the metaplectic

group, Mp(V, s), so they will be suppressed.
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Explicit symplectic implementors

The implementation and homomorphism conditions determine Sg to within a

multiplicative constant:

Theorem. (H 1981, Math Proc. Camb. Phil. Soc. 90 465-476). The

tempered distribution Sg is supported on (g − 1).V and given there by

Sg(v) = D−1 det(g − 1)−
1
2 exp

[
is

(
v,

(
g + 1

g − 1

)
v

)
/2~
]
,

where D is a constant.

(It is the choice of square root for det(g − 1) which gives the multiplier.)
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Equivariance

The distribution Sg is equivariant since

Shgh−1 ? Sh = Sh ? Sg = (h · Sg) ? Sh

from which it follows that

Shgh−1 = (h · Sg).
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Invariants

When h and g commute we have

Sg(h
−1v) = (h · Sg)(v) = Shgh−1(v) = Sg(v).

Thus for any subgroup H, the distributions Sg with g in the centraliser H ′ of

H are H invariant. In fact they are invariant under the centraliser H ′′ of H ′.
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Dual pairs

Two subgroups H and G such that G = H ′ and H = G′ are said to be a

dual pair.

Example.

H = {h : (a, α) 7→ (cos(θ)a− sin(θ)α, cos(θ)α+ sin(θ)a)} ∼= U(1)

has dual

H ′ = {g : (a, α) 7→ (Aa−Bα,Aα+Ba) : A>A+B>B = 1, A>B = B>A},

which is isomorphic to U(n) since the conditions give

(A+ iB)∗(A+ iB) = 1.
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Howe duality

When one of a dual pair of subgroups is compact it is easy to prove that

the von Neumann algebra generated by {W (Sh) : h ∈ H} is the commutant

of the von Neumann algebra generated by {W (Sg) : g ∈ G} and vice versa.

Howe’s Duality Theorem says that this works for dual pairs of reductive

subgroups.

The distributional approach suggests the conjecture that this generalises to

other dual pairs.
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The symplectic Fourier transform

Applying the general formula

Sg(v) = D−1 det(g − 1)−
1
2 exp

[
is

(
v,

(
g + 1

g − 1

)
v

)
/4~
]
,

we see that when g = −1, S−1 is a constant C = D−1 det(−2)−
1
2 , defined

on the whole of V .

Its twisted convolution with any Schwartz function f is

(fS−1 ∗ f)(v) = C

∫
V

f2(v − u)σ(u, v − u) du = C

∫
V

f2(w)eis(v−w,w)/~ dw

so we could have used S−1 ∗ f as the Fourier transform of f , and henceforth

will do so.
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The Moyal implementors

The above Fourier transform is actually an involution, since

f = S−1 ∗ (S−1 ∗ f).

With the above Fourier transform convention, and setting φj = S−1 ∗ fj , we

have

(φ1) ? (φ2) = S−1 ∗ (f1 ∗ f2) = φ1 ∗ S−1 ∗ φ2,

We now set Eg = S−g = S−1 ∗ Sg = Sg ∗ S−1, so that

Eg ?φ = S−g ∗S−1 ∗φ = Sg ∗φ = (g.φ)∗Sg = (g.φ)∗S−1 ∗Eg = (g.φ)?Eg.
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Explicit Moyal implementors

Theorem (H 1981) The distribution Eg supported on (g + 1) · V and

given by

Eg(v) = D−1? det(g + 1)−
1
2 exp

(
−i2s

(
v,

(
g − 1

g + 1

)
v

)
/~
)
.

satisfies

Eg ? φ = (g.φ) ? Eg, Eg ? Eh = Egh, Ehgh−1 = h.Eg.
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The infinitesimal moment map

The explicit formula shows that, for X in the Lie algebra g = sp(V, s),

Eexp(tX) can be differentiated with respect to t at t = 0, to give a function

µX on R. Differentiating the implementation relation gives

µX ? f − f ? µX = X.f

where X acts on f as the vector field derivation.

The definition of the Moyal product shows that µX ? f − f ? µx = {µX , f} is

the Poisson bracket. so

{µX , f} = X.f,

the moment-map property.
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Relation to equivariant group-valued maps

Theorem (H 2011) Let µ : V → G = Sp(V, s) be continuous and

equivariant in the sense that gµ(v)g−1 = µ(g−1v), and define

Sµ(v) = Sµ(v)(v). Then Sµ is a constant.
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Sketch Proof

The orbits of Sp(V, s) on V are {0} and V \ {0}. The equivariance property

determines Smu on the larger orbit, and then continuity determines Sµ(0).

If we choose a non-zero vector v0 ∈ V and a cross-section γ : V → Sp(V, s)

such that γ(v).v0 = v, then

µ(v) = µ(γ(v)v0) = γ(v)µ(v0)γ(v)−1

so that µ(v0) determines the entire function.

Moreover,

Sµ(v)(v) = Sγ(v)µ(v0)γ(v)−1(γ(v).v0) = γ(v).Sµ(v0)(γ(v).v0) = Sµ(v0)(v0)

independent of v.
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Sp(V, s)-valued moment maps

Theorem (H 2011) Every equivariant Sp(V, s)-valued map on V has the

form µ±t (v) : w 7→ µ(w + ts(v, w)v) for some real t, and µ±t is an

Sp(V, s)-valued moment map.
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Proof

The second part can be done by direct calculation: one just checks that µ±t
is equivariant, commutes with the stabiliser of v, and satisfies the moment

map conditions. These conditions involve checking that the canonical 3-form

on Sp(V, s) pulls back to 0, (since s defines a closed symplectic form), and

that the appropriate kernel is trivial since s is non-degenerate.

The first part exploits the equivariance requirement that µ(v) commutes with

the stabiliser of v, which is a large enough parabolic subgroup to force µ to

have the form µ±t .
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Homogeneous manifolds

Bowes and H (1997, J. Geom. and Phys. 22 319–348):

Given

• compact group G,

• irreducible representation D on a finite-dim. inner product space HD,

• set adD(x)[ρ = D(x)ρD(x)−1,

• positive self-adjoint operator ρ on HD, with tr[ρ] = 1,

• K be the subgroup of k ∈ G such that D(k) commutes with ρ.

we have adD(xk)[ρ = D(xk)ρD(xk)−1 is independent of k.
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Homogeneous manifolds

Using the trace (Hilbert-Schmidt) inner product on operators, for each

operator A on HD define

fA(x) = 〈adD(x)[ρ], A〉tr.

Since fA(x) depends only on the coset xK.it gives a function on the

homogeneous space M = G/K.
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A star product

For suitable ρ and D the map A 7→ fA(·) = 〈adD(·)[ρ], A〉tr is invertible and

gives a quantisation of C(G/K). Then we can define a star product on

functions by

fA ? fB = fAB

When G can be imbedded in a symplectic group so that it is the centraliser

of its centraliser then this structure can be obtained by symplectic reduction

of the Moyal product.
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Borel–Weil–Bott

When G is a compact Lie group, Ω a highest weight vector and ρ projection

onto Ω we get an explicit realisation of HD as holomorphic sections of a line

bundle L over G/K. Tensor powers Ω⊗k are associated with Lk, For A on

the symmetric tensor power ⊗rSHD one has the natural injection

A⊗S 1⊗(k−r) on ⊗kHD one can identify fA corresponding to different

spaces, and we write ?k for the star product (so that ?1 = ?).
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The star product expansion

Intuitively k behaves like 1/~.

Theorem (Bowes and H 1997) For A on ⊗rSHD and B on ⊗sSHD one

has an expansion of the form

fA ? fB =

min(r,s)∑
p=max(0,r+s−k)

(k − r)!(k − s)!
k!(k + p− r − s)!

fA ◦p fB

where ◦0 is the pointwise product, and ◦p are other explicitly defined

products.
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The star product expansion

In the classical limit of large k the general formula gives

fA ? fB ∼
min(r,s)∑

p=max(0,r+s−k)

k−pfA ◦p fB ∼ fAfB

In the particular case when r = s = 1 the expansion is

fA ?k fB = fAfB +
1

k
(fAB − fAfB),

where fAfB is the pointwise product.
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Frønsdal exponential maps

We define exponential functions by

Eg(xK) = fD(g)(xK) = tr[ρD(x−1gx)]

This ensures that

Eg ? fA = fD(g) ? fA = fD(g)A.

In particular when A = D(h) this gives

Eg ? Eh = fD(gh) = Egh,

and also

Eg ? fA = fadD(g)A ? Eg.
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Star product implementors

Now

fadD(g)A(x) = 〈adD(x)ρ, adD(g)A〉tr
= 〈adD(g−1x)ρ,A〉tr
= fA(g−1x) = (g.fA)(x),

so that

Eg ? fA = (g.fA) ? Eg.
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Moment maps

As in the metaplectic case, setting µY = dEexp(tY )/dt|t=0 gives

µY ? fA − fA ? µY = vY .fA

where vY is the vector field defined by Y ∈ g.

Commutators with respect to the star product are connected to the standard

symplectic form, as we see by defining the element ξρ ∈ g∗ by

ξρ(Y ) = 〈ρ, Ḋ(Y )〉

where Ḋ denotes the representation of g obtained from D. This gives

[fḊ(Y ), fḊ(Z)]? = f[Ḋ(Y ),Ḋ(Z)] = 〈adD(x)ρ, Ḋ[Y,Z]〉 = (ad∗(x)ξρ)([Y, Z]).
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THE END


