Metaplectic moments

Keith Hannabuss
(Oxford)

Workshop on Moment maps,
Adelaide, 6 September 2011

1. Exponentiated moment maps
(a) Group-valued moment maps.
(b) The metaplectic representation.

- Weyl's commutation relations and the Moyal algebra.
- Symplectic automorphisms.
- Tempered implementors.
- The connection with group-valued moment maps.
(c) Reduced spaces

Born-Heisenberg commutation relations

$$
\left[X_{j}, X_{k}\right]=0, \quad\left[P_{j}, P_{k}\right]=0, \quad\left[X_{j}, P_{k}\right]=i \hbar \delta_{j k} 1
$$

$$
W(a, \alpha):=\exp (i(a \cdot P-\alpha \cdot X) / \hbar)
$$

$$
W(a, \alpha) W(b, \beta)=e^{i(a \cdot \beta-b \cdot \alpha) / 2 \hbar} W(a+b, \alpha+\beta)
$$

Generalisation to locally compact abelian groups V with symplectic form s and multiplier $\sigma=\exp (i s(u, v) \hbar)$

$$
W(u) W(v)=\sigma(u, v) W(u+v)
$$

The TWISTED GROUP ALGEBRA
For any Haar (Lebesgue) integrable function and, in particular, any Schwartz function $f \in \mathcal{S}(V)$ set

$$
W(f)=\int_{V} f(v) W(v) d v
$$

Then

$$
W\left(f_{1}\right) W\left(f_{2}\right)=W\left(f_{1} * f_{2}\right)
$$

where

$$
\left(f_{1} * f_{2}\right)(v)=\int_{V} f_{1}(u) f_{2}(v-u) \sigma(u, v-u) d u
$$

is twisted convolution.
The Clifford/fermion algebra is the twisted group algebra of $V=\mathbb{Z}_{2}^{n}$ with

$$
\sigma(m, n)=(-1)^{\sum_{i>j} m_{i} n_{j}}
$$

The classical situation has $\sigma=1$ so that the multiplication is ordinary convolution and everything commutes. The analogue of $W(f)$ is the Fourier transform $f \mapsto \widehat{f}$, (which preserves $\mathcal{S}(V)$).
Weyl's quantisation $\mathcal{Q}(\widehat{f})=W(f)$, sends the classical to the quantum transform.

$$
\mathcal{Q}\left(\widehat{f_{1} * f_{2}}\right)=W\left(f_{1} * f_{2}\right)=W\left(f_{1}\right) W\left(f_{2}\right)=\mathcal{Q}\left(\widehat{f_{1}}\right) \mathcal{Q}\left(\widehat{f}_{2}\right)
$$

We set

$$
\widehat{f_{1}} \star \widehat{f_{2}}=\widehat{f_{1} * f_{2}}
$$

to get the Moyal product (a star product).

Writing $\phi_{j}=\widehat{f}_{j}$, we see that $\phi_{1} \star \phi_{2}$ is the Fourier transform of

$$
\begin{aligned}
\phi_{1} * \phi_{2}= & \int_{V} e^{-i s(u, v-u) / \hbar} f_{1}(u) f_{2}(v-u) d u \\
= & \int_{V} f_{1}(u) f_{2}(v-u) d u-\frac{i}{\hbar} \int_{V} s(u, v-u) f_{1}(u) f_{2}(v-u) d u \\
& -\frac{1}{2 \hbar^{2}} \int_{V} s(u, v-u)^{2} f_{1}(u) f_{2}(v-u) d u+\ldots
\end{aligned}
$$

$$
\phi_{1} * \phi_{2}=\int_{V} f_{1}(u) f_{2}(v-u) d u-\frac{i}{\hbar} \int_{V} s(u, v-u) f_{1}(u) f_{2}(v-u) d u+\ldots
$$

The first term is ordinary convolution and has the pointwise product $\phi_{1} \phi_{2}$ as Fourier transform. The multiplications by powers of $s(u, v-u)$ introduce derivatives $-\hbar^{2} s\left(\partial_{1}, \partial_{2}\right) \phi_{1} \phi_{2}$ and the first two terms become

$$
\phi_{1} * \phi_{2}=\phi_{1} \phi_{2}+i \hbar s\left(\partial_{1}, \partial_{2}\right) \phi_{1} \phi_{2}+\ldots .
$$

In particular, we get the Moyal commutator

$$
\phi_{1} * \phi_{2}-\phi_{2}=2 i \hbar s\left(\partial_{1}, \partial_{2}\right) \phi_{1} \phi_{2}+\ldots=i \hbar\left\{\phi_{1}, \phi_{2}\right\}+\ldots,
$$

the dominant term being the Poisson bracket.

Since a symplectic transformation g of V preserves s and the addititive structure of V the action on a function f

$$
(g . f)(v)=f\left(g^{-1} v\right)
$$

preserves the twisted convolution.

SYMPLECTIC IMPLEMENTORS

The symplectic automorphisms are not inner, but approximately inner:
There exist tempered distributions $S_{g} \in \mathcal{S}^{\prime}(V)$ which are in the multiplier algebra, i.e. $S_{g} * \mathcal{S}(V) \subseteq \mathcal{S}(V)$ and $\mathcal{S}(V) * S_{g} \subseteq \mathcal{S}(V)$, such that

$$
S_{g} * f=(g . f) * S_{g}
$$

for all $f \in \mathcal{S}(V)$ and $g \in G=\operatorname{Sp}(V, s)$.

Moreover these can be chosen such that

$$
S_{g} * S_{h}=\alpha(g, h) S_{g h}
$$

for all $g, h \in \operatorname{Sp}(V, s)$, where $\alpha(g, h)= \pm 1$ is a multiplier, which can be removed by going to the central extension which it defines, the metaplectic group, $\operatorname{Mp}(V, s)$, so they will be suppressed.

EXPLICIT SYMPLECTIC IMPLEMENTORS

The implementation and homomorphism conditions determine S_{g} to within a multiplicative constant:

Theorem. (H 1981, Math Proc. Camb. Phil. Soc. 90 465-476). The tempered distribution S_{g} is supported on $(g-1) . V$ and given there by

$$
S_{g}(v)=D^{-1} \operatorname{det}(g-1)^{-\frac{1}{2}} \exp \left[i s\left(v,\left(\frac{g+1}{g-1}\right) v\right) / 2 \hbar\right],
$$

where D is a constant.
(It is the choice of square root for $\operatorname{det}(g-1)$ which gives the multiplier.)

Equivariance

The distribution S_{g} is equivariant since

$$
S_{h g h^{-1}} \star S_{h}=S_{h} \star S_{g}=\left(h \cdot S_{g}\right) \star S_{h}
$$

from which it follows that

$$
S_{h g h^{-1}}=\left(h \cdot S_{g}\right)
$$

When h and g commute we have

$$
S_{g}\left(h^{-1} v\right)=\left(h \cdot S_{g}\right)(v)=S_{h g h^{-1}}(v)=S_{g}(v)
$$

Thus for any subgroup H, the distributions S_{g} with g in the centraliser H^{\prime} of H are H invariant. In fact they are invariant under the centraliser $H^{\prime \prime}$ of H^{\prime}.

DUAL PAIRS

Two subgroups H and G such that $G=H^{\prime}$ and $H=G^{\prime}$ are said to be a dual pair.

Example.

$$
H=\{h:(a, \alpha) \mapsto(\cos (\theta) a-\sin (\theta) \alpha, \cos (\theta) \alpha+\sin (\theta) a)\} \cong U(1)
$$

has dual
$H^{\prime}=\left\{g:(a, \alpha) \mapsto(A a-B \alpha, A \alpha+B a): A^{\top} A+B^{\top} B=1, A^{\top} B=B^{\top} A\right\}$,
which is isomorphic to $U(n)$ since the conditions give
$(A+i B)^{*}(A+i B)=1$.

When one of a dual pair of subgroups is compact it is easy to prove that the von Neumann algebra generated by $\left\{W\left(S_{h}\right): h \in H\right\}$ is the commutant of the von Neumann algebra generated by $\left\{W\left(S_{g}\right): g \in G\right\}$ and vice versa.

Howe's Duality Theorem says that this works for dual pairs of reductive subgroups.

The distributional approach suggests the conjecture that this generalises to other dual pairs.

Applying the general formula

$$
S_{g}(v)=D^{-1} \operatorname{det}(g-1)^{-\frac{1}{2}} \exp \left[i s\left(v,\left(\frac{g+1}{g-1}\right) v\right) / 4 \hbar\right],
$$

we see that when $g=-1, S_{-1}$ is a constant $C=D^{-1} \operatorname{det}(-2)^{-\frac{1}{2}}$, defined on the whole of V.

Its twisted convolution with any Schwartz function f is
$\left(f S_{-1} * f\right)(v)=C \int_{V} f_{2}(v-u) \sigma(u, v-u) d u=C \int_{V} f_{2}(w) e^{i s(v-w, w) / \hbar} d w$ so we could have used $S_{-1} * f$ as the Fourier transform of f, and henceforth will do so.

The Moyal Implementors

The above Fourier transform is actually an involution, since
$f=S_{-1} *\left(S_{-1} * f\right)$.
With the above Fourier transform convention, and setting $\phi_{j}=S_{-1} * f_{j}$, we have

$$
\left(\phi_{1}\right) \star\left(\phi_{2}\right)=S_{-1} *\left(f_{1} * f_{2}\right)=\phi_{1} * S_{-1} * \phi_{2}
$$

We now set $E_{g}=S_{-g}=S_{-1} * S_{g}=S_{g} * S_{-1}$, so that
$E_{g} \star \phi=S_{-g} * S_{-1} * \phi=S_{g} * \phi=(g \cdot \phi) * S_{g}=(g \cdot \phi) * S_{-1} * E_{g}=(g \cdot \phi) \star E_{g}$.

Explicit Moyal implementors

Theorem (H1981) The distribution E_{g} supported on $(g+1) \cdot V$ and given by

$$
E_{g}(v)=D_{\star}^{-1} \operatorname{det}(g+1)^{-\frac{1}{2}} \exp \left(-i 2 s\left(v,\left(\frac{g-1}{g+1}\right) v\right) / \hbar\right) .
$$

satisfies

$$
E_{g} \star \phi=(g \cdot \phi) \star E_{g}, \quad E_{g} \star E_{h}=E_{g h}, \quad E_{h g h^{-1}}=h . E_{g} .
$$

The infinitesimal moment map
The explicit formula shows that, for X in the Lie algebra $g=s p(V, s)$, $E_{\exp (t X)}$ can be differentiated with respect to t at $t=0$, to give a function μ_{X} on \mathbb{R}. Differentiating the implementation relation gives

$$
\mu_{X} \star f-f \star \mu_{X}=X . f
$$

where X acts on f as the vector field derivation.
The definition of the Moyal product shows that $\mu_{X} \star f-f \star \mu_{x}=\left\{\mu_{X}, f\right\}$ is the Poisson bracket. so

$$
\left\{\mu_{X}, f\right\}=X . f
$$

the moment-map property.

RELATION TO EQUIVARIANT GROUP-VALUED MAPS
Theorem (H2011) Let $\mu: V \rightarrow G=\mathrm{Sp}(V, s)$ be continuous and equivariant in the sense that $g \mu(v) g^{-1}=\mu\left(g^{-1} v\right)$, and define $S_{\mu}(v)=S_{\mu(v)}(v)$. Then S_{μ} is a constant.

The orbits of $\operatorname{Sp}(V, s)$ on V are $\{0\}$ and $V \backslash\{0\}$. The equivariance property determines $S_{m} u$ on the larger orbit, and then continuity determines $S_{\mu}(0)$.
If we choose a non-zero vector $v_{0} \in V$ and a cross-section $\gamma: V \rightarrow \operatorname{Sp}(V, s)$ such that $\gamma(v) . v_{0}=v$, then

$$
\mu(v)=\mu\left(\gamma(v) v_{0}\right)=\gamma(v) \mu\left(v_{0}\right) \gamma(v)^{-1}
$$

so that $\mu\left(v_{0}\right)$ determines the entire function.
Moreover,

$$
S_{\mu(v)}(v)=S_{\gamma(v) \mu\left(v_{0}\right) \gamma(v)^{-1}}\left(\gamma(v) \cdot v_{0}\right)=\gamma(v) \cdot S_{\mu\left(v_{0}\right)}\left(\gamma(v) \cdot v_{0}\right)=S_{\mu\left(v_{0}\right)}\left(v_{0}\right)
$$

independent of v.

Adelaide 2011-23
$\operatorname{Sp}(V, s)$-VALUED MOMENT MAPS
Theorem (H 2011) Every equivariant $\operatorname{Sp}(V, s)$-valued map on V has the form $\mu_{t}^{ \pm}(v): w \mapsto \mu(w+t s(v, w) v)$ for some real t, and $\mu_{t}^{ \pm}$is an $\mathrm{Sp}(V, s)$-valued moment map.

Proof

The second part can be done by direct calculation: one just checks that $\mu_{t}^{ \pm}$ is equivariant, commutes with the stabiliser of v, and satisfies the moment map conditions. These conditions involve checking that the canonical 3 -form on $\operatorname{Sp}(V, s)$ pulls back to 0 , (since s defines a closed symplectic form), and that the appropriate kernel is trivial since s is non-degenerate.
The first part exploits the equivariance requirement that $\mu(v)$ commutes with the stabiliser of v, which is a large enough parabolic subgroup to force μ to have the form $\mu_{t}^{ \pm}$.

Bowes and H (1997, J. Geom. and Phys. 22 319-348):
Given

- compact group G,
- irreducible representation D on a finite-dim. inner product space \mathcal{H}_{D},
- set $\operatorname{ad}_{D}(x)\left[\rho=D(x) \rho D(x)^{-1}\right.$,
- positive self-adjoint operator ρ on \mathcal{H}_{D}, with $\operatorname{tr}[\rho]=1$,
- K be the subgroup of $k \in G$ such that $D(k)$ commutes with ρ.
we have $\operatorname{ad}_{D}(x k)\left[\rho=D(x k) \rho D(x k)^{-1}\right.$ is independent of k.

Homogeneous manifolds

Using the trace (Hilbert-Schmidt) inner product on operators, for each operator A on \mathcal{H}_{D} define

$$
f_{A}(x)=\left\langle\operatorname{ad}_{D}(x)[\rho], A\right\rangle_{\mathrm{tr}} .
$$

Since $f_{A}(x)$ depends only on the coset $x K$.it gives a function on the homogeneous space $M=G / K$.

A STAR PRODUCT

For suitable ρ and D the map $A \mapsto f_{A}(\cdot)=\left\langle\operatorname{ad}_{D}(\cdot)[\rho], A\right\rangle_{\text {tr }}$ is invertible and gives a quantisation of $C(G / K)$. Then we can define a star product on functions by

$$
f_{A} \star f_{B}=f_{A B}
$$

When G can be imbedded in a symplectic group so that it is the centraliser of its centraliser then this structure can be obtained by symplectic reduction of the Moyal product.

When G is a compact Lie group, Ω a highest weight vector and ρ projection onto Ω we get an explicit realisation of \mathcal{H}_{D} as holomorphic sections of a line bundle \mathcal{L} over G / K. Tensor powers $\Omega^{\otimes k}$ are associated with \mathcal{L}^{k}, For A on the symmetric tensor power $\otimes_{S}^{r} \mathcal{H}_{D}$ one has the natural injection $A \otimes_{S} 1^{\otimes(k-r)}$ on $\otimes^{k} \mathcal{H}_{D}$ one can identify f_{A} corresponding to different spaces, and we write \star_{k} for the star product (so that $\star_{1}=\star$).

The star PRODUCT EXPANSION
Intuitively k behaves like $1 / \hbar$.
Theorem (Bowes and H 1997) For A on $\otimes_{S}^{r} \mathcal{H}_{D}$ and B on $\otimes_{S}^{s} \mathcal{H}_{D}$ one has an expansion of the form

$$
f_{A} \star f_{B}=\sum_{p=\max (0, r+s-k)}^{\min (r, s)} \frac{(k-r)!(k-s)!}{k!(k+p-r-s)!} f_{A} \circ_{p} f_{B}
$$

where \circ_{0} is the pointwise product, and o_{p} are other explicitly defined products.

The star product expansion
In the classical limit of large k the general formula gives

$$
f_{A} \star f_{B} \sim \sum_{p=\max (0, r+s-k)}^{\min (r, s)} k^{-p} f_{A} \circ_{p} f_{B} \sim f_{A} f_{B}
$$

In the particular case when $r=s=1$ the expansion is

$$
f_{A} \star_{k} f_{B}=f_{A} f_{B}+\frac{1}{k}\left(f_{A B}-f_{A} f_{B}\right)
$$

where $f_{A} f_{B}$ is the pointwise product.

FrØNSDAL EXPONENTIAL MAPS
We define exponential functions by

$$
E_{g}(x K)=f_{D(g)}(x K)=\operatorname{tr}\left[\rho D\left(x^{-1} g x\right)\right]
$$

This ensures that

$$
E_{g} \star f_{A}=f_{D(g)} \star f_{A}=f_{D(g) A} .
$$

In particular when $A=D(h)$ this gives

$$
E_{g} \star E_{h}=f_{D(g h)}=E_{g h},
$$

and also

$$
E_{g} \star f_{A}=f_{\operatorname{ad}_{D}(g) A} \star E_{g} .
$$

STAR PRODUCT IMPLEMENTORS

Now

$$
\begin{aligned}
f_{\operatorname{ad}_{D}(g) A}(x) & =\left\langle\operatorname{ad}_{D}(x) \rho, \operatorname{ad}_{D}(g) A\right\rangle_{\operatorname{tr}} \\
& =\left\langle\operatorname{ad}_{D}\left(g^{-1} x\right) \rho, A\right\rangle_{\operatorname{tr}} \\
& =f_{A}\left(g^{-1} x\right)=\left(g \cdot f_{A}\right)(x)
\end{aligned}
$$

so that

$$
E_{g} \star f_{A}=\left(g \cdot f_{A}\right) \star E_{g} .
$$

As in the metaplectic case, setting $\mu_{Y}=d E_{\exp (t Y)} /\left.d t\right|_{t=0}$ gives

$$
\mu_{Y} \star f_{A}-f_{A} \star \mu_{Y}=v_{Y} \cdot f_{A}
$$

where v_{Y} is the vector field defined by $Y \in g$.
Commutators with respect to the star product are connected to the standard symplectic form, as we see by defining the element $\xi_{\rho} \in g^{*}$ by

$$
\xi_{\rho}(Y)=\langle\rho, \dot{D}(Y)\rangle
$$

where \dot{D} denotes the representation of g obtained from D. This gives
$\left[f_{\dot{D}(Y)}, f_{\dot{D}(Z)}\right]_{\star}=f_{[\dot{D}(Y), \dot{D}(Z)]}=\left\langle\operatorname{ad}_{D}(x) \rho, \dot{D}[Y, Z]\right\rangle=\left(\operatorname{ad}^{*}(x) \xi_{\rho}\right)([Y, Z])$.

THE END

