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This talk is based on

Topological T-duality for general circle bundles

arXiv:1105.0290v2

Conformal Courant algebroids and orientifold T-duality,

arXiv:1109.0875v1

and

Topological T-duality for torus bundles with monodromy,

(in preparation)
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Overview

Aim of this talk is to demonstrate how the structure of Courant
algebroids can offer some new insights into T-duality.

First review Courant algebroids, their relation with T-duality.

Then look at T-duality with monodromy.

Finally look at T-duality for (a very simple class of) orientifolds.
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Courant algebroids

Definition
A Courant algebroid on a smooth manifold X consists of

A vector bundle E ,
A bundle map ρ : E → TX called the anchor,
A non-degenerate symmetric bilinear form 〈 , 〉 : E ⊗ E → R,
An R-bilinear operation [ , ] : Γ(E)⊗R Γ(E)→ Γ(E) on sections of
E , the Dorfman bracket,

such that

for all a,b, c ∈ Γ(E), f ∈ C∞(X )

CA1 [a, [b, c]] = [[a,b], c] + [b, [a, c]],
CA2 ρ[a,b] = [ρ(a), ρ(b)],
CA3 [a, fb] = ρ(a)(f )b + f [a,b],
CA4 [a,b] + [b,a] = ρ∗d〈a,b〉,
CA5 ρ(a)〈b, c〉 = 〈[a,b], c〉+ 〈a, [b, c]〉

David Baraglia (ANU) Monodromy and orientifolds 8 Sep 4 / 41



Courant algebroids

Definition
A Courant algebroid on a smooth manifold X consists of

A vector bundle E ,
A bundle map ρ : E → TX called the anchor,
A non-degenerate symmetric bilinear form 〈 , 〉 : E ⊗ E → R,
An R-bilinear operation [ , ] : Γ(E)⊗R Γ(E)→ Γ(E) on sections of
E , the Dorfman bracket,

such that for all a,b, c ∈ Γ(E), f ∈ C∞(X )

CA1 [a, [b, c]] = [[a,b], c] + [b, [a, c]],
CA2 ρ[a,b] = [ρ(a), ρ(b)],
CA3 [a, fb] = ρ(a)(f )b + f [a,b],
CA4 [a,b] + [b,a] = ρ∗d〈a,b〉,
CA5 ρ(a)〈b, c〉 = 〈[a,b], c〉+ 〈a, [b, c]〉

David Baraglia (ANU) Monodromy and orientifolds 8 Sep 4 / 41



Remark

The skew-symmetrisation of [ , ] is called the Courant bracket.

Γ(E) with the Courant bracket can be made into to a Lie 2-algebra with
two term complex

C∞(X )
ρ∗◦d→ Γ(E)
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Exact Courant algebroids

Definition
A Courant algebroid E is exact if the sequence
0→ T ∗X

ρ∗→ E
ρ→ TX → 0 is exact.

Theorem (Ševera)
Isomorphism classes of exact Courant algebroids on X are in bijection
with H3(X ,R). If H is a closed 3-form on X then a representative
Courant algebroid for [H] is given by

E = TX ⊕ T ∗X with obvious anchor and symmetric bilinear pairing
[X + ξ,Y + η]H = [X ,Y ] + LXη − iY dξ + iX iY H

Call [ , ]H the H-twisted Dorfman bracket on E = TX ⊕ T ∗X .
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The untwisted generalised tangent bundle

Definition
E = TX ⊕T ∗X is called the (untwisted) generalised tangent bundle.
The natural pairing 〈 , 〉 and orientation gives E an SO(n,n)-structure.

There is a homomorphism GL(n,R)→ Spin(n,n) which gives E a spin
structure, but for T-duality all spin structures must be considered.

The untwisted Dorfman bracket [X + ξ,Y + η] = [X ,Y ] + LXη − iY dξ
makes E a Courant algebroid.

Symmetry group of E : Diff(X ) n Ω2
cl(X ). A closed 2-form B acts by a

B-shift:
eB(X + ξ) = X + ξ + iX B,

where X is a tangent vector and ξ a 1-form.
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Spinors for the generalised tangent bundle

The spin bundle S for E with the spin structure inherited from the
homomorphism GL(n,R)→ Spin(n,n) is given by S =

∧∗ T ∗X

Actually it’s
∧∗ T ∗X ⊗ |det(T ∗X )|−1/2. Neglect extra factor by choosing

a density on X .

S = S+ ⊕ S−

where S+ =
∧even T ∗X , S− =

∧odd T ∗X .

The exterior derivative d defines a differential

D : Γ(S±)→ Γ(S∓).
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Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover {Ui}
(Uij = Ui ∩ Uj and so on).

Definition
A graded gerbe G = (Lij , αij , θijk ) consists of

a U(1)-line bundle Lij on each Uij ,
a Z2 grading for each line bundle, that is for each Lij an element
αij ∈ Z2,
an isomorphism θijk : Lij ⊗ Ljk → Lik on each Uijk

such that the θijk preserve grading and satisfy the obvious associativity
condition.

The θijk are required to respect the grading, thus αij + αjk = αik and αij
defines a class α ∈ H1(X ,Z2).

Graded gerbes up to stable isomorphism are classified by
H1(X ,Z2)× H3(X ,Z).
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Gerbe connections

Definition
A connection on G is a choice of unitary connection ∇ij for each Lij
such that the θijk are constant.

Let Fij be the curvature of ∇ij . The Fij are closed 2-forms and

Fij + Fjk + Fik = 0.

David Baraglia (ANU) Monodromy and orientifolds 8 Sep 10 / 41



Twisted generalised tangent bundle

The generalised tangent bundle TX ⊕ T ∗X can be twisted by a gerbe.

Define a bundle E = E(G,∇ij) as follows:

We set E |Ui = TX ⊕ T ∗X |Ui . On Uij patch copies of TX ⊕ T ∗X together
using a B-shift by the closed 2-form Fij .

So a section of E is a collection {(Xi , ξi)}, (Xi , ξi) ∈ Γ(TX ⊕ T ∗X ,Ui)
such that on Uij

Xi = Xj ,

ξi = ξj + iXj Fij .

The transitions eFij are symmetries of TX ⊕ T ∗X |Ui as a Courant
algebroid. Thus E becomes a Courant algebroid. Call E a twisted
generalised tangent bundle.
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Twisted spinor bundle

Also get a spin structure on E .

To define it we introduce a twisted spin bundle S = S(G,∇ij).

Set S|Ui =
∧∗ T ∗X |Ui .

On Uij introduce the following transitions:

ωi = (−1)αij e−Fij ∧ ωj = (−1)αij (ωj − Fij ∧ ωj +
1
2

Fij ∧ Fij ∧ ωj + . . . )

Since the Fij are closed we still get a differential D : Γ(S±)→ Γ(S∓).

Notice how the grading {αij} affects the Spin(n,n) transition functions.
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Splitting the structure

Definition
A curving for a gerbe with connection (G,∇ij) is a collection of 2-forms
Bi such that Bj − Bi = Fij . There is a unique 3-form H such that
H|Ui = dBi called the curvature. [H] ∈ H3(X ,R) is the image of the
Dixmier-Douady class of G in real cohomology.

A curving yields an explicit vector bundle isomorphism
φ : E ' TX ⊕ T ∗X .

Under φ the Courant bracket on E maps to the H-twisted Courant
bracket on TX ⊕ T ∗X .

Conclude: twisting TX ⊕ T ∗X by G ⇐⇒ twisting [ , ] by H.
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Splitting the structure 2

A curving also yields an isomorphism of the spin bundle S:

S ' A⊗
∧∗

T ∗X

where A is the Z2-line bundle corresponding to [α] ∈ H1(X ,Z2).

Under φ the operator D becomes the twisted differential d∇,H :

d∇,Hω = d∇ω + H ∧ ω

where ∇ is the flat connection on A.

The (Z2-graded) cohomology groups H∗(X , (α,H)) called the twisted
cohomology associated to the pair (α, [H]) ∈ H1(X ,Z2)× H3(X ,R).
K -theory can be twisted by graded gerbes. There is a Chern character

Ch(G,∇ij ,Bi ) : K ∗(X ,G)→ H∗(X , (α,H)).
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Dimensional reduction

Let π : X → M be a principal circle bundle and h ∈ H3(X ,Z).

Choose an invariant closed 3-form H ∈ Ω3(X ) representing h over R.

The generalised tangent bundle (E = TX ⊕ T ∗X , [ , ]H) twisted by H
admits a lift of the S1-action as symmetries.

The quotient Ered = E/S1 is a vector bundle on M such that sections
of Ered correspond to invariant sections of E .

Ered inherits the structure of a Courant algebroid (e.g. if a,b are
invariant then so is [a,b]H ).

Write Ered(X ,h) to indicate dependence on (X ,h). Call Ered(X ,h) with
inherited Courant algebroid structure the dimensional reduction of
(E , [ , ]H). Note that Ered is not an exact Courant algebroid.
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Courant algebroids and T-duality

The link between T-duality and Courant algebroids is:

Theorem

If (X ,h), (X̂ , ĥ) are T-dual then the dimensional reductions Ered(X ,h),
Ered(X̂ , ĥ) are isomorphic as Courant algebroids on M.

Definition

Let (X ,h), (X̂ , ĥ) be principal circle bundles over M equipped with flux
h ∈ H3(X ,Z), ĥ ∈ H3(X̂ ,Z). Then (X ,h), (X̂ , ĥ) are T-dual if

c1(X ) = π̂∗(ĥ),
c1(X̂ ) = π∗(h),
h and ĥ agree when pulled back to the fibre product C = X ×M X̂ ,

where π, π̂ are the bundle projections π : X → M, π̂ : X̂ → M and π∗, π̂∗
pushforwards in cohomology (roughly integration over the fibre).
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Let (X ,h), (X̂ , ĥ) be principal circle bundles over M equipped with flux
h ∈ H3(X ,Z), ĥ ∈ H3(X̂ ,Z). Then (X ,h), (X̂ , ĥ) are T-dual if

c1(X ) = π̂∗(ĥ),
c1(X̂ ) = π∗(h),
h and ĥ agree when pulled back to the fibre product C = X ×M X̂ ,

where π, π̂ are the bundle projections π : X → M, π̂ : X̂ → M and π∗, π̂∗
pushforwards in cohomology (roughly integration over the fibre).
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Adding a grading to the gerbes

We can enhance this slightly by using graded gerbes: h ∈ H3(X ,Z)
becomes (α,h) ∈ H1(X ,Z2)× H3(X ,Z).

(X , α, h), (X̂ , α̂, ĥ) are T-dual if in addition α = α̂ ∈ H1(M,Z2).

Theorem

If (X , α, h), (X̂ , α̂, ĥ) are T-dual then we have isomorphisms

H∗(X , (α,h)) = H∗−1(X̂ , (α̂, ĥ)),

K ∗(X , (α,h)) = K ∗−1(X̂ , (α̂, ĥ)),

in twisted cohomology/K -theory.

Note: for unoriented circle bundles α 6= α̂ and the grading becomes
necessary.
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Transitive Courant algebroids

Much of the structure of (X ,h) is captured by the Courant algebroid
Ered(X ,h) (torsion information is lost however).

Ered(X ,h) is not an exact Courant algebroid, but it is transitive: the
anchor ρ : Ered(X ,h)→ TM is surjective.

There are many transitive Courant algebroids not of the form
Ered(X ,h).

Studying transitive Courant algebroids gives insights in to T-duality.

Remarkably this seems to naturally incorporate many enhancements
to T-duality: monodromy, T-folds, orientifolds, heterotic T-duality,
Poisson-Lie-T-duality (non-abelian T-duality).
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Local description of transitive Courant algebroids

Let V be a real vector space and 〈 , 〉 a non-degenerate bilinear form of
any signature.

Associated to V is the Z2-graded Clifford algebra Cliff (V ). Taking
graded commutators yields a graded Lie algebra A(V ).

Surprising fact: A(V ) is actually Z-graded!

A(V ) = A−2 ⊕ A−1 ⊕ A0 ⊕ A1 ⊕ . . .

where Ai = ∧i+2V .

On a smooth manifold M we get an associated dgla

A = A(V )⊗ Ω∗(M).

A Maurer-Cartan element for A is an element ω ∈ A of degree 1 such
that dω + 1

2 [ω, ω] = 0.
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Local description of transitive Courant algebroids 2

A Maurer-Cartan element determines a Courant algebroid structure on
E = TM ⊕A−1 = TM ⊕ V ⊕ T ∗M through a derived bracket
construction. Locally every transitive Courant algebroid has this form.

A global description just involves adding in some O(V )-transition
functions.

For T-duality over n-dimensional fibres let V have signature (n,n). Can
write V = t ⊕ t∗ for some rank n vector space t .

The group O(n,n) acts as automorphisms of A. This action is closely
related to T-duality.

ω ∈ Ω3(M)⊕ (t + t∗)⊗Ω2(M)⊕∧2(t + t∗)⊗Ω1(M)⊕∧3(t + t∗)⊗Ω0(M).
Write as ω = ω3 + ω2 + ω1 + ω0.

We consider some special cases.
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One leg on the fibre

ω3 = H3 ∈ Ω3(M), ω2 = (F , F̂ ) ∈ Ω2(M)⊗ (t + t∗), ω1 = ω0 = 0.

dF = 0,
dF̂ = 0,

dH3 + 〈F ∧ F̂ 〉 = 0.

If [F ], [F̂ ] are integral we can interpret them as Chern classes of T-dual
bundles X , X̂ .

If A, Â are connections on X , X̂ so that dA = F , dÂ = F̂ then

H = H3 + A ∧ F̂ ,
Ĥ = H3 + Â ∧ F ,

are the T-dual 3-forms on X , X̂ .
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Two legs on the fibre

ω0 = 0, but now ω1 6= 0. ω1 is valued in ∧2(t + t∗)⊗ Ω1(M).

∧2(t + t∗) is the Lie algebra of O(n,n). Think of ω1 as an
O(n,n)-connection ∇ = d + ω1.

The Maurer-Cartan equations become

F∇ = 0,
d∇(F , F̂ ) = 0,

dH3 + 〈F ∧ F̂ 〉 = 0.

∇ is a flat O(n,n) connection. The pair (F , F̂ ) defines a cohomology
class with local coefficients.

Impose integrality: (F , F̂ ) integral and O(n,n,Z)-holonomy. Interpret
as a T 2n-bundle C → M. If the monodromy reduces to
GL(n,Z) ⊂ O(n,n,Z) then we can write C as a fibre product
C = X ×M X̂ . Think of X , X̂ as T-duals.
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T-duality with monodromy

Courant algebroid approach suggests a T-duality for torus bundles
which have both monodromy and Chern classes.

To capture this introduce the group Aff(T n) = GL(n,Z) n T n of affine
transformations of T n.

Definition
An affine torus bundle is a torus bundle X → M with structure group
Aff(T n).

Affine torus bundles have a monodromy representation
ρ : π1(M)→ GL(n,Z) and a twisted Chern class c ∈ H2(M,Λρ),
where Λ = Zn and Λρ is the corresponding local system.

The data (ρ, c) determines X and every such pair yields and affine
torus bundle. For n ≤ 3 every torus bundle is affine.
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T-duality with monodromy 2

T-duality should dualise monodromy: ρ̂ = ρ∗

Twisted Chern classes and flux should be interchanged: recall there is
a filtration on H3(X ,Z) associated to Leray-Serre SS {Ep,q

r }

F 3,3 ⊆ F 2,3 ⊆ F 1,3 ⊆ F 0,3 = H3(X ,Z).

Say that h ∈ H3(X ,Z) is T-dualizable if h ∈ F 2,3 (h has “one leg on the
fibre”).

F 2,3/F 3,3 = E2,3
∞ is a subquotient of E2,1

2 = H2(M, (Λρ)∗) = H2(M,Λρ̂).

This is where the dual twisted Chern class ĉ lives, so we demand that
ĉ projects to image of h in F 2,3/F 3,3.
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T-duality with monodromy 3

Definition

Let π : X → M, π̂ : X̂ → M be affine torus bundles, monodromy ρ, ρ̂,
twisted Chern classes c, ĉ, T-dualizable fluxes h ∈ H3(X ,Z),
ĥ ∈ H3(X̂ ,Z) and gerbe gradings α, α̂ ∈ H1(M,Z2).

(X , α, h), (X̂ , α̂, ĥ) are T-dual if
ρ̂ = ρ∗

Image of ĉ in E2,1
∞ (π) = F 2,3/F 3,3 equals h mod F 3,3

Similarly for c and ĥ
α̂ = α + det(ρ)

h and ĥ agree on X ×M X̂ .

Actually this last property is too weak: ( (2.7) in Bunke, Rumpf, Schick).
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T-duality with monodromy 4

ρ determines a flat vector bundle Vρ = Λρ ⊗ R. Set w1 = w1(Vρ),
W3 = W3(Vρ).

Say (X , α, h) is T-dualizable in twisted K-theory if (β = Bockstein)

W3 + β(αw1) = 0.

This condition is T-duality invariant.

Theorem

If (X , α, h), (X̂ , α̂, ĥ) be are T-duals of rank n, T-dualizable in twisted
K-theory then we have isomorphisms

K ∗(X , (α,h)) ' K ∗−n(X̂ , (α̂, ĥ)),

H∗(X , (α,h)) ' H∗−n(X̂ , (α̂, ĥ)).
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Example

M = T 2, π1(M) = Z2 generated by x , y say.

Monodromy ρ : π1(M)→ SL(2,Z) as follows:

ρ(x) =

[
1 m
0 1

]
, ρ(y) =

[
1 n
0 1

]
where m,n ∈ Z are positive integers with no common factor. Note that
ρ is self-dual.

Λρ the corresponding Z2-valued local system.

H2(M,Λρ) = Z. Affine T 2-bundles on M with monodromy ρ are
classified by an integer j ∈ Z. Let Ej → M be the corresponding torus
bundle.

Let F 2,3(Ej) ⊆ H3(Ej ,Z) be the subgroup of T-dualisable flux. We find

F 2,3(Ej) =

{
Z, j = 0
Zj , j 6= 0
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classified by an integer j ∈ Z. Let Ej → M be the corresponding torus
bundle.

Let F 2,3(Ej) ⊆ H3(Ej ,Z) be the subgroup of T-dualisable flux. We find

F 2,3(Ej) =

{
Z, j = 0
Zj , j 6= 0
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Example 2

An integer k ∈ Z thus determines a T-dualisable flux hk ∈ H3(Ej ,Z).
By construction hk+j = hk .

The pair (Ej ,hk ) is classified by the pair of integers (j , k).

The relation hk+j = hk induces an equivalence relation
(j , k) ∼ (j , k + j) (is actually a kind of B-shift).

T-duality corresponds to the interchange (j , k) 7→ (k , j).

Let K i(j , k) = K i(Ej ,hk ). So

K i(j , k) = K i(j , k + j),
K i(j , k) = K i−2(k , j) = K i(k , j)

by B-shifts and T-duality.
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Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some
twisted K -theory groups. An extension problem prevents calculation of
the other groups.

i K i(j , k) K i(j , k) K i(j , k) K i(j , k)

j = 0, k = 0 j = 0, k 6= 0 j 6= 0, j |k j 6= 0, j - k

0 Z4 Z2 ⊕ Zk ∗ ∗

1 Z6 Z4 ⊕ Zk Z4 ⊕ Zj Z4 ⊕ Zgcd(j,k)

By T-duality K 0(j ,0) = K 0(0, j) = Z2 ⊕ Zj .

For K 0(j , k) we make repeated use of (j , k) ∼ (j , k + j) and
(j , k) ∼ (k , j). Use Euclidean algorithm to get
K 0(j , k) ' K 0(gcd(j , k),0) = Z2 ⊕ Zgcd(j,k).
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Conformal Courant algebroids

Recall that TX ⊕ T ∗X with untwisted Dorfman bracket has symmetries
by closed 2-forms.

There is actually a second kind of symmetry

X + ξ 7→ X + cξ

where c is a non-zero constant.

This action of R× preserves the Dorfman bracket but only preserves
the pairing 〈 , 〉 up to scale.

Suggests a modification of Courant algebroid axioms that replaces 〈 , 〉
by a conformal structure.
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Definition

Definition
A conformal Courant algebroid on a smooth manifold X consists of

A vector bundle E ,
A line bundle L with E-connection ∇,
A bundle map ρ : E → TX called the anchor,
A non-degenerate symmetric bilinear form 〈 , 〉 : E ⊗ E → L,
An R-bilinear operation [ , ] : Γ(E)⊗R Γ(E)→ Γ(E) on sections of
E , the Dorfman bracket,

such that

for all a,b, c ∈ Γ(E), f ∈ Γ(L)

CA1 [a, [b, c]] = [[a,b], c] + [b, [a, c]],
CA2 ρ[a,b] = [ρ(a), ρ(b)],
CA3 [a, fb] = ρ(a)(f )b + f [a,b],
CA4 [a,b] + [b,a] = ∇〈a,b〉,
CA5 ∇a〈b, c〉 = 〈[a,b], c〉+ 〈a, [b, c]〉
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Exact conformal Courant algebroids

Definition
A conformal Courant algebroid E is exact if the sequence
0→ T ∗X ⊗ L

ρ∗→ E
ρ→ TX → 0 is exact.

Theorem
Isomorphism classes of exact Courant algebroids on X correspond to
pairs (ε,H) with ε ∈ H1(X ,R×) representing a flat real line bundle L
and H ∈ H3(X ,L), modulo the equivalence (ε,H) ∼ (ε, cH) for c ∈ R×.
Given (L,∇) and d∇-closed 3-form H a representative Courant
algebroid for (L,∇), [H] is given by

E = TX ⊕ (L⊗ T ∗X ) with obvious anchor and symmetric bilinear
pairing
[X + ξ,Y + η]L,H = [X ,Y ] + L∇X η − iY d∇ξ + iX iY H

Call [ , ]L,H the (L,H)-twisted Dorfman bracket on E = TX ⊕T ∗X ⊗ L.
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ε-twisted graded gerbes

From now on take ε ∈ H1(X ,Z2) ⊆ H1(X ,R×), so L is a flat orthogonal
line bundle. Let εij be a Čech cocycle representing ε.

Definition
An ε-twisted graded gerbe G = (Lij , αij , θijk ) consists of

a Z2-graded U(1)-line bundle Lij on each Uij

an isomorphism θijk : Lεjkij ⊗ Ljk → Lik on each Uijk

such that the θijk preserve grading and satisfies an associativity
condition.

Where L1 = L, L−1 = L∗.

Graded gerbes up to stable isomorphism are classified by
H1(X ,Z2)× H3(X ,Zε) where Zε is the Z-valued local system obtained
from ε.
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ε-twisted Gerbe connections

Definition
A connection on G is a choice of unitary connection ∇ij for each Lij
such that the θijk are constant.

Let Fij be the curvature of ∇ij . The Fij are closed 2-forms and

εjkFij + Fjk + Fik = 0.
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Twisted generalised tangent bundle revisited

As before obtain a bundle E which over Ui looks like TX ⊕ T ∗X |Ui .

This time introduce transitions (−1)εij eFij ∈ Z2 n Ω2
cl(X ).

The transitions preserve the conformal Courant algebroid structure on
TX ⊕ T ∗X , so E becomes and exact conformal Courant algebroid.

This time instead of a spin structure we consider a Z2 n Spin(n,n)
structure. We get a kind of Z4-graded spinor bundle St which over Ui
looks like

St |Ui =
⊕
k∈Z

Lk ⊗
∧t+2k

T ∗X

but globally gets twisted. Still get a differential D : Γ(St )→ Γ(St+1).
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Splitting the structure

Definition
A curving for an ε-twisted gerbe with connection (G,∇ij) is a collection
of 2-forms Bi such that Bj − εijBi = Fij . The locally defined 3-forms
Hi = dBi satisfy Hi = εijHj , so define a d∇-closed 3-form H ∈ Ω3(X ,L)
called the curvature. [H] ∈ H3(X ,L) is the image of the
Dixmier-Douady class of G in real cohomology.

As before curving yields an isomorphism φ : E ' TX ⊕ (L⊗ T ∗X ).

Under φ the Courant bracket on E maps to the (L,H)-twisted Courant
bracket on TX ⊕ (L⊗ T ∗X ).
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Splitting the structure 2

Similarly a curving yields an isomorphism of the spin bundle S:

Si '
⊕
k∈Z

A⊗ Lk ⊗
∧i+2k

T ∗X

where A is the Z2-line bundle A corresponding to the grading class
[α] ∈ H1(X ,Z2).

The operator D becomes the twisted differential
d∇,H : Γ(Si)→ Γ(Si+1) given by:

d∇,Hω = d∇ω + H ∧ ω

where ∇ denotes the flat connection on the various A⊗ Lk .
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Twisted cohomology

Let H∗ε (X , (α,H)) denote the (Z4-graded) cohomology groups.

We conjecture that H∗ε (X , (α,H)) is the target for a Chern character in
twisted KR-theory.
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T-duality

Let π : X → M be a torus bundle, ε ∈ H1(M,Z2) and G an ε-twisted
graded gerbe on X with class (α,h) ∈ H1(X ,Z2)× H3(X ,Zε).

As before invariant sections yield a conformal Courant algebroid
Ered(X ,G) over M. To formulate T-duality we demand an isomorphism
between these algebroids.

Choosing a connection on X we have that

Ered(X ,G) = TM ⊕ V ⊕ (L⊗ V ∗)⊕ (L⊗ T ∗M)

where V is the vertical bundle (the flat GL(n,Z) vector bundle
associated to the monodromy).

Roughly speaking T-duality should interchange the inner two factors.
This leads to a definition of T-duality for torus bundles with ε-twisted
graded gerbes.
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Example

Skip to an example.

Let M = S1, ε = ε̂ the non-trivial class in H1(S1,Z2) = Z2. Take
X = T 2 and trivial twisted graded gerbe.

Then one finds that X̂ = K the Klein bottle similarly equipped with the
trivial twisted graded gerbe.

We proved there is an isomorphism in twisted cohomologies

H i
ε(T

2, (0,0)) = H i−1
ε (K , (0,0)).

We conjecture this extends to twisted KR-theory. The missing
ingredients are Mayer-Vietoris and a push-forward in twisted
KR-theory. In this case we should have an isomorphism

KR i(T 2
ε ) = KR i−1(Kε).
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Example 2

Using a spectral sequence computation we get:

i KR i(T 2
ε ) KR i(Kε)

0 Z⊕ Z2 Z2

1 Z2 Z

2 Z Z2

3 Z2 Z⊕ Z2

Note: generally KR is 8-periodic, but in this example 4-periodic.

We see that KR i(T 2
ε ) = KR i−1(Kε) is satisfied.
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