Monodromy and orientifolds in T-duality via Courant algebroids

David Baraglia

The Australian National University Canberra, Australia

Group-valued moment maps with applications to mathematics and physics University of Adelaide, 8 September

Topological T-duality for general circle bundles arXiv:1105.0290v2

Conformal Courant algebroids and orientifold T-duality, arXiv:1109.0875v1

and

Topological T-duality for torus bundles with monodromy, (in preparation)

Aim of this talk is to demonstrate how the structure of **Courant algebroids** can offer some new insights into **T-duality**.

First review Courant algebroids, their relation with T-duality.

Then look at T-duality with monodromy.

Finally look at T-duality for (a very simple class of) orientifolds.

Courant algebroids

Definition

A Courant algebroid on a smooth manifold X consists of

- A vector bundle *E*,
- A bundle map $\rho: E \to TX$ called the **anchor**,
- A non-degenerate symmetric bilinear form $\langle , \rangle : E \otimes E \to \mathbb{R}$,
- An ℝ-bilinear operation [,]: Γ(E) ⊗_ℝ Γ(E) → Γ(E) on sections of E, the Dorfman bracket,

such that

Courant algebroids

Definition

A Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A bundle map $\rho: E \to TX$ called the **anchor**,
- A non-degenerate symmetric bilinear form $\langle , \rangle : E \otimes E \to \mathbb{R}$,
- An ℝ-bilinear operation [,]: Γ(E) ⊗_ℝ Γ(E) → Γ(E) on sections of E, the Dorfman bracket,

```
such that for all a, b, c \in \Gamma(E), f \in C^{\infty}(X)

CA1 [a, [b, c]] = [[a, b], c] + [b, [a, c]],

CA2 \rho[a, b] = [\rho(a), \rho(b)],

CA3 [a, fb] = \rho(a)(f)b + f[a, b],

CA4 [a, b] + [b, a] = \rho^* d\langle a, b \rangle,

CA5 \rho(a)\langle b, c \rangle = \langle [a, b], c \rangle + \langle a, [b, c] \rangle
```

The skew-symmetrisation of [,] is called the Courant bracket.

The skew-symmetrisation of [,] is called the Courant bracket.

 $\Gamma(E)$ with the Courant bracket can be made into to a Lie 2-algebra with two term complex

 $\mathcal{C}^{\infty}(X) \stackrel{\rho^* \circ d}{\to} \Gamma(E)$

A Courant algebroid *E* is **exact** if the sequence

 $0 \to T^* X \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \to 0$ is exact.

A Courant algebroid E is **exact** if the sequence

 $0 \to T^* X \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \to 0$ is exact.

Theorem (Ševera)

Isomorphism classes of exact Courant algebroids on X are in bijection with $H^3(X, \mathbb{R})$. If H is a closed 3-form on X then a representative Courant algebroid for [H] is given by

• $E = TX \oplus T^*X$ with obvious anchor and symmetric bilinear pairing

•
$$[X + \xi, Y + \eta]_H = [X, Y] + \mathcal{L}_X \eta - i_Y d\xi + i_X i_Y H$$

A Courant algebroid E is **exact** if the sequence

 $0 \to T^* X \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \to 0$ is exact.

Theorem (Ševera)

Isomorphism classes of exact Courant algebroids on X are in bijection with $H^3(X, \mathbb{R})$. If H is a closed 3-form on X then a representative Courant algebroid for [H] is given by

- $E = TX \oplus T^*X$ with obvious anchor and symmetric bilinear pairing
- $[X + \xi, Y + \eta]_H = [X, Y] + \mathcal{L}_X \eta i_Y d\xi + i_X i_Y H$

Call [,]_{*H*} the *H*-twisted Dorfman bracket on $E = TX \oplus T^*X$.

 $E = TX \oplus T^*X$ is called the **(untwisted) generalised tangent bundle**. The natural pairing \langle , \rangle and orientation gives *E* an *SO*(*n*, *n*)-structure.

 $E = TX \oplus T^*X$ is called the **(untwisted) generalised tangent bundle**. The natural pairing \langle , \rangle and orientation gives *E* an *SO*(*n*, *n*)-structure.

There is a homomorphism $GL(n, \mathbb{R}) \rightarrow Spin(n, n)$ which gives *E* a spin structure, but **for T-duality all spin structures must be considered**.

 $E = TX \oplus T^*X$ is called the **(untwisted) generalised tangent bundle**. The natural pairing \langle , \rangle and orientation gives *E* an *SO*(*n*, *n*)-structure.

There is a homomorphism $GL(n, \mathbb{R}) \rightarrow Spin(n, n)$ which gives *E* a spin structure, but **for T-duality all spin structures must be considered**.

The untwisted Dorfman bracket $[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - i_Y d\xi$ makes *E* a Courant algebroid.

Symmetry group of E: Diff $(X) \ltimes \Omega_{cl}^2(X)$. A closed 2-form B acts by a B-shift:

$$e^{B}(X+\xi)=X+\xi+i_{X}B,$$

where X is a tangent vector and ξ a 1-form.

Spinors for the generalised tangent bundle

The spin bundle *S* for *E* with the spin structure inherited from the homomorphism $GL(n, \mathbb{R}) \rightarrow Spin(n, n)$ is given by $S = \bigwedge^* T^*X$

The spin bundle *S* for *E* with the spin structure inherited from the homomorphism $GL(n, \mathbb{R}) \rightarrow Spin(n, n)$ is given by $S = \bigwedge^* T^*X$

Actually it's $\bigwedge^* T^*X \otimes |det(T^*X)|^{-1/2}$. Neglect extra factor by choosing a density on *X*.

The spin bundle *S* for *E* with the spin structure inherited from the homomorphism $GL(n, \mathbb{R}) \rightarrow Spin(n, n)$ is given by $S = \bigwedge^* T^*X$

Actually it's $\bigwedge^* T^*X \otimes |det(T^*X)|^{-1/2}$. Neglect extra factor by choosing a density on *X*.

 $S = S_+ \oplus S_-$

where $S_+ = \bigwedge^{even} T^*X$, $S_- = \bigwedge^{odd} T^*X$.

The exterior derivative *d* defines a differential

$$D: \Gamma(S_{\pm}) \rightarrow \Gamma(S_{\mp}).$$

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\{U_i\}$ $(U_{ij} = U_i \cap U_j \text{ and so on}).$

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\{U_i\}$ $(U_{ij} = U_i \cap U_j \text{ and so on}).$

Definition

A graded gerbe $\mathcal{G} = (L_{ij}, \alpha_{ij}, \theta_{ijk})$ consists of

- a U(1)-line bundle L_{ij} on each U_{ij} ,
- a \mathbb{Z}_2 grading for each line bundle, that is for each L_{ij} an element $\alpha_{ij} \in \mathbb{Z}_2$,
- an isomorphism $\theta_{ijk}: L_{ij} \otimes L_{jk} \to L_{ik}$ on each U_{ijk}

such that the θ_{ijk} preserve grading and satisfy the obvious associativity condition.

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\{U_i\}$ $(U_{ij} = U_i \cap U_j \text{ and so on}).$

Definition

A graded gerbe $\mathcal{G} = (L_{ij}, \alpha_{ij}, \theta_{ijk})$ consists of

- a U(1)-line bundle L_{ij} on each U_{ij} ,
- a Z₂ grading for each line bundle, that is for each L_{ij} an element α_{ij} ∈ Z₂,
- an isomorphism $\theta_{ijk}: L_{ij} \otimes L_{jk} \to L_{ik}$ on each U_{ijk}

such that the θ_{ijk} preserve grading and satisfy the obvious associativity condition.

The θ_{ijk} are required to respect the grading, thus $\alpha_{ij} + \alpha_{jk} = \alpha_{ik}$ and α_{ij} defines a class $\alpha \in H^1(X, \mathbb{Z}_2)$.

Graded gerbes up to stable isomorphism are classified by $H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z})$.

David Baraglia (ANU)

A **connection** on \mathcal{G} is a choice of unitary connection ∇_{ij} for each L_{ij} such that the θ_{ijk} are constant.

Let F_{ij} be the curvature of ∇_{ij} . The F_{ij} are closed 2-forms and

$$F_{ij}+F_{jk}+F_{ik}=0.$$

The generalised tangent bundle $TX \oplus T^*X$ can be twisted by a gerbe.

The generalised tangent bundle $TX \oplus T^*X$ can be twisted by a gerbe. Define a bundle $E = E(\mathcal{G}, \nabla_{ij})$ as follows:

We set $E|_{U_i} = TX \oplus T^*X|_{U_i}$. On U_{ij} patch copies of $TX \oplus T^*X$ together using a *B*-shift by the closed 2-form F_{ij} .

The generalised tangent bundle $TX \oplus T^*X$ can be twisted by a gerbe. Define a bundle $E = E(\mathcal{G}, \nabla_{ij})$ as follows:

We set $E|_{U_i} = TX \oplus T^*X|_{U_i}$. On U_{ij} patch copies of $TX \oplus T^*X$ together using a *B*-shift by the closed 2-form F_{ij} .

So a section of *E* is a collection $\{(X_i, \xi_i)\}, (X_i, \xi_i) \in \Gamma(TX \oplus T^*X, U_i)$ such that on U_{ij}

$$\begin{array}{rcl} X_i &=& X_j, \\ \xi_i &=& \xi_j + i_{X_j} F_{ij}. \end{array}$$

The generalised tangent bundle $TX \oplus T^*X$ can be twisted by a gerbe. Define a bundle $E = E(\mathcal{G}, \nabla_{ij})$ as follows:

We set $E|_{U_i} = TX \oplus T^*X|_{U_i}$. On U_{ij} patch copies of $TX \oplus T^*X$ together using a *B*-shift by the closed 2-form F_{ij} .

So a section of *E* is a collection $\{(X_i, \xi_i)\}, (X_i, \xi_i) \in \Gamma(TX \oplus T^*X, U_i)$ such that on U_{ij}

$$\begin{array}{rcl} X_i &=& X_j, \\ \xi_i &=& \xi_j + i_{X_j} F_{ij}. \end{array}$$

The transitions $e^{F_{ij}}$ are symmetries of $TX \oplus T^*X|_{U_i}$ as a Courant algebroid. Thus *E* becomes a Courant algebroid. Call *E* a **twisted** generalised tangent bundle.

Also get a spin structure on *E*.

To define it we introduce a twisted spin bundle $S = S(G, \nabla_{ij})$.

Also get a spin structure on E.

To define it we introduce a twisted spin bundle $S = S(\mathcal{G}, \nabla_{ij})$.

Set $S|_{U_i} = \bigwedge^* T^*X|_{U_i}$.

On U_{ij} introduce the following transitions:

$$\omega_i = (-1)^{\alpha_{ij}} e^{-F_{ij}} \wedge \omega_j = (-1)^{\alpha_{ij}} (\omega_j - F_{ij} \wedge \omega_j + \frac{1}{2} F_{ij} \wedge F_{ij} \wedge \omega_j + \dots)$$

Also get a spin structure on E.

To define it we introduce a twisted spin bundle $S = S(G, \nabla_{ij})$.

Set $S|_{U_i} = \bigwedge^* T^*X|_{U_i}$.

On U_{ij} introduce the following transitions:

$$\omega_i = (-1)^{\alpha_{ij}} \boldsymbol{e}^{-F_{ij}} \wedge \omega_j = (-1)^{\alpha_{ij}} (\omega_j - F_{ij} \wedge \omega_j + \frac{1}{2} F_{ij} \wedge F_{ij} \wedge \omega_j + \dots)$$

Since the F_{ij} are **closed** we still get a differential $D : \Gamma(S_{\pm}) \to \Gamma(S_{\mp})$. Notice how the grading $\{\alpha_{ij}\}$ affects the Spin(n, n) transition functions.

A **curving** for a gerbe with connection $(\mathcal{G}, \nabla_{ij})$ is a collection of 2-forms B_i such that $B_j - B_i = F_{ij}$. There is a unique 3-form H such that $H|_{U_i} = dB_i$ called the **curvature**. $[H] \in H^3(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

A **curving** for a gerbe with connection $(\mathcal{G}, \nabla_{ij})$ is a collection of 2-forms B_i such that $B_j - B_i = F_{ij}$. There is a unique 3-form H such that $H|_{U_i} = dB_i$ called the **curvature**. $[H] \in H^3(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

A curving yields an explicit vector bundle isomorphism $\phi: E \simeq TX \oplus T^*X$.

A **curving** for a gerbe with connection $(\mathcal{G}, \nabla_{ij})$ is a collection of 2-forms B_i such that $B_j - B_i = F_{ij}$. There is a unique 3-form H such that $H|_{U_i} = dB_i$ called the **curvature**. $[H] \in H^3(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

A curving yields an explicit vector bundle isomorphism $\phi: E \simeq TX \oplus T^*X$.

Under ϕ the Courant bracket on *E* maps to the *H*-twisted Courant bracket on $TX \oplus T^*X$.

Conclude: twisting $TX \oplus T^*X$ by $\mathcal{G} \iff$ twisting [,] by H.

A curving also yields an isomorphism of the spin bundle S:

$$S \simeq A \otimes \bigwedge^* T^* X$$

where *A* is the \mathbb{Z}_2 -line bundle corresponding to $[\alpha] \in H^1(X, \mathbb{Z}_2)$.

A curving also yields an isomorphism of the spin bundle S:

$$S\simeq A\otimes \bigwedge^* T^*X$$

where *A* is the \mathbb{Z}_2 -line bundle corresponding to $[\alpha] \in H^1(X, \mathbb{Z}_2)$. Under ϕ the operator *D* becomes the **twisted differential** $d_{\nabla, H}$:

$$d_{\nabla,H}\omega = d_{\nabla}\omega + H \wedge \omega$$

where ∇ is the flat connection on *A*.

A curving also yields an isomorphism of the spin bundle S:

$$S\simeq A\otimes \bigwedge^* T^*X$$

where *A* is the \mathbb{Z}_2 -line bundle corresponding to $[\alpha] \in H^1(X, \mathbb{Z}_2)$. Under ϕ the operator *D* becomes the **twisted differential** $d_{\nabla, H}$:

$$d_{\nabla,H}\omega = d_{\nabla}\omega + H \wedge \omega$$

where ∇ is the flat connection on *A*.

The (\mathbb{Z}_2 -graded) cohomology groups $H^*(X, (\alpha, H))$ called the **twisted** cohomology associated to the pair $(\alpha, [H]) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{R})$.

A curving also yields an isomorphism of the spin bundle S:

$$S\simeq A\otimes \bigwedge^* T^*X$$

where *A* is the \mathbb{Z}_2 -line bundle corresponding to $[\alpha] \in H^1(X, \mathbb{Z}_2)$. Under ϕ the operator *D* becomes the **twisted differential** $d_{\nabla, H}$:

$$d_{\nabla,H}\omega = d_{\nabla}\omega + H \wedge \omega$$

where ∇ is the flat connection on *A*.

The (\mathbb{Z}_2 -graded) cohomology groups $H^*(X, (\alpha, H))$ called the **twisted cohomology** associated to the pair $(\alpha, [H]) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{R})$. *K*-theory can be twisted by **graded** gerbes. There is a Chern character

$$Ch_{(\mathcal{G},\nabla_{ij},B_i)}: K^*(X,\mathcal{G}) \to H^*(X,(\alpha,H)).$$

Let $\pi : X \to M$ be a principal circle bundle and $h \in H^3(X, \mathbb{Z})$.

Choose an invariant closed 3-form $H \in \Omega^3(X)$ representing *h* over \mathbb{R} .

The generalised tangent bundle ($E = TX \oplus T^*X$, [,]_H) twisted by H admits a lift of the S^1 -action as symmetries.

Let $\pi : X \to M$ be a principal circle bundle and $h \in H^3(X, \mathbb{Z})$.

Choose an invariant closed 3-form $H \in \Omega^3(X)$ representing *h* over \mathbb{R} .

The generalised tangent bundle ($E = TX \oplus T^*X$, [,]_H) twisted by H admits a lift of the S^1 -action as symmetries.

The quotient $E_{\rm red} = E/S^1$ is a vector bundle on *M* such that sections of $E_{\rm red}$ correspond to invariant sections of *E*.

 E_{red} inherits the structure of a Courant algebroid (e.g. if *a*, *b* are invariant then so is $[a, b]_H$).
Let $\pi : X \to M$ be a principal circle bundle and $h \in H^3(X, \mathbb{Z})$.

Choose an invariant closed 3-form $H \in \Omega^3(X)$ representing *h* over \mathbb{R} .

The generalised tangent bundle ($E = TX \oplus T^*X$, [,]_H) twisted by H admits a lift of the S^1 -action as symmetries.

The quotient $E_{\text{red}} = E/S^1$ is a vector bundle on *M* such that sections of E_{red} correspond to invariant sections of *E*.

 E_{red} inherits the structure of a Courant algebroid (e.g. if *a*, *b* are invariant then so is $[a, b]_H$).

Write $E_{red}(X, h)$ to indicate dependence on (X, h). Call $E_{red}(X, h)$ with inherited Courant algebroid structure the **dimensional reduction** of $(E, [,]_H)$. Note that E_{red} is **not** an exact Courant algebroid.

Courant algebroids and T-duality

The link between T-duality and Courant algebroids is:

Theorem

If (X, h), (\hat{X}, \hat{h}) are T-dual then the dimensional reductions $E_{red}(X, h)$, $E_{red}(\hat{X}, \hat{h})$ are isomorphic as Courant algebroids on M.

Courant algebroids and T-duality

The link between T-duality and Courant algebroids is:

Theorem

If (X, h), (\hat{X}, \hat{h}) are T-dual then the dimensional reductions $E_{red}(X, h)$, $E_{red}(\hat{X}, \hat{h})$ are isomorphic as Courant algebroids on M.

Definition

Let (X, h), (\hat{X}, \hat{h}) be principal circle bundles over M equipped with flux $h \in H^3(X, \mathbb{Z})$, $\hat{h} \in H^3(\hat{X}, \mathbb{Z})$. Then (X, h), (\hat{X}, \hat{h}) are **T-dual** if • $c_1(X) = \hat{\pi}_*(\hat{h})$, • $c_1(\hat{X}) = \pi_*(h)$, • h and \hat{h} agree when pulled back to the fibre product $C = X \times_M \hat{X}$, where $\pi, \hat{\pi}$ are the bundle projections $\pi : X \to M$, $\hat{\pi} : \hat{X} \to M$ and $\pi_*, \hat{\pi}_*$ pushforwards in cohomology (roughly integration over the fibre).

Adding a grading to the gerbes

We can enhance this slightly by using graded gerbes: $h \in H^3(X, \mathbb{Z})$ becomes $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z})$.

 (X, α, h) , $(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if in addition $\alpha = \hat{\alpha} \in H^1(M, \mathbb{Z}_2)$.

Adding a grading to the gerbes

We can enhance this slightly by using graded gerbes: $h \in H^3(X, \mathbb{Z})$ becomes $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z})$.

 (X, α, h) , $(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if in addition $\alpha = \hat{\alpha} \in H^1(M, \mathbb{Z}_2)$.

Theorem

If (X, α, h) , $(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual then we have isomorphisms

$$\begin{array}{lll} H^{*}(X,(\alpha,h)) &=& H^{*-1}(\hat{X},(\hat{\alpha},\hat{h})),\\ K^{*}(X,(\alpha,h)) &=& K^{*-1}(\hat{X},(\hat{\alpha},\hat{h})), \end{array}$$

in twisted cohomology/K-theory.

Note: for unoriented circle bundles $\alpha \neq \hat{\alpha}$ and the grading becomes necessary.

Much of the structure of (X, h) is captured by the Courant algebroid $E_{red}(X, h)$ (torsion information is lost however).

 $E_{\text{red}}(X, h)$ is not an exact Courant algebroid, but it is **transitive**: the anchor $\rho : E_{\text{red}}(X, h) \to TM$ is surjective.

Much of the structure of (X, h) is captured by the Courant algebroid $E_{red}(X, h)$ (torsion information is lost however).

 $E_{\text{red}}(X, h)$ is not an exact Courant algebroid, but it is **transitive**: the anchor $\rho : E_{\text{red}}(X, h) \to TM$ is surjective.

There are many transitive Courant algebroids not of the form $E_{red}(X, h)$.

Studying transitive Courant algebroids gives insights in to T-duality.

Much of the structure of (X, h) is captured by the Courant algebroid $E_{red}(X, h)$ (torsion information is lost however).

 $E_{\text{red}}(X, h)$ is not an exact Courant algebroid, but it is **transitive**: the anchor $\rho : E_{\text{red}}(X, h) \to TM$ is surjective.

There are many transitive Courant algebroids not of the form $E_{red}(X, h)$.

Studying transitive Courant algebroids gives insights in to T-duality.

Remarkably this seems to naturally incorporate many enhancements to T-duality: monodromy, T-folds, orientifolds, heterotic T-duality, Poisson-Lie-T-duality (non-abelian T-duality).

Let V be a real vector space and $\langle\,,\,\rangle$ a non-degenerate bilinear form of any signature.

Associated to V is the \mathbb{Z}_2 -graded Clifford algebra Cliff(V). Taking **graded commutators** yields a graded Lie algebra A(V).

Surprising fact: A(V) is actually \mathbb{Z} -graded!

$$A(V) = A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus \ldots$$

where $A_i = \wedge^{i+2} V$.

Let V be a real vector space and $\langle\,,\,\rangle$ a non-degenerate bilinear form of any signature.

Associated to V is the \mathbb{Z}_2 -graded Clifford algebra Cliff(V). Taking **graded commutators** yields a graded Lie algebra A(V).

Surprising fact: A(V) is actually \mathbb{Z} -graded!

$$A(V) = A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus \ldots$$

where $A_i = \wedge^{i+2} V$.

On a smooth manifold *M* we get an associated dgla

$$\mathcal{A}=\mathcal{A}(V)\otimes \Omega^*(M).$$

A **Maurer-Cartan element** for \mathcal{A} is an element $\omega \in \mathcal{A}$ of degree 1 such that $d\omega + \frac{1}{2}[\omega, \omega] = 0$.

A Maurer-Cartan element determines a Courant algebroid structure on $E = TM \oplus A_{-1} = TM \oplus V \oplus T^*M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.

A global description just involves adding in some O(V)-transition functions.

A Maurer-Cartan element determines a Courant algebroid structure on $E = TM \oplus A_{-1} = TM \oplus V \oplus T^*M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.

A global description just involves adding in some O(V)-transition functions.

For T-duality over *n*-dimensional fibres let *V* have signature (n, n). Can write $V = t \oplus t^*$ for some rank *n* vector space *t*.

The group O(n, n) acts as automorphisms of A. This action is closely related to T-duality.

 $\omega \in \Omega^3(M) \oplus (t+t^*) \otimes \Omega^2(M) \oplus \wedge^2(t+t^*) \otimes \Omega^1(M) \oplus \wedge^3(t+t^*) \otimes \Omega^0(M).$ Write as $\omega = \omega_3 + \omega_2 + \omega_1 + \omega_0.$

A Maurer-Cartan element determines a Courant algebroid structure on $E = TM \oplus A_{-1} = TM \oplus V \oplus T^*M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.

A global description just involves adding in some O(V)-transition functions.

For T-duality over *n*-dimensional fibres let *V* have signature (n, n). Can write $V = t \oplus t^*$ for some rank *n* vector space *t*.

The group O(n, n) acts as automorphisms of A. This action is closely related to T-duality.

 $\omega \in \Omega^3(M) \oplus (t+t^*) \otimes \Omega^2(M) \oplus \wedge^2(t+t^*) \otimes \Omega^1(M) \oplus \wedge^3(t+t^*) \otimes \Omega^0(M).$ Write as $\omega = \omega_3 + \omega_2 + \omega_1 + \omega_0.$

We consider some special cases.

One leg on the fibre

$$\omega_3 = H_3 \in \Omega^3(M), \, \omega_2 = (F, \hat{F}) \in \Omega^2(M) \otimes (t + t^*), \, \omega_1 = \omega_0 = 0.$$

$$\begin{array}{rcl} dF &=& 0,\\ d\hat{F} &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

One leg on the fibre

$$\omega_3 = H_3 \in \Omega^3(M), \, \omega_2 = (F, \hat{F}) \in \Omega^2(M) \otimes (t + t^*), \, \omega_1 = \omega_0 = 0.$$

$$\begin{array}{rcl} dF &=& 0,\\ d\hat{F} &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

If [F], $[\hat{F}]$ are integral we can interpret them as Chern classes of T-dual bundles X, \hat{X} .

One leg on the fibre

$$\omega_3 = H_3 \in \Omega^3(M), \, \omega_2 = (F, \hat{F}) \in \Omega^2(M) \otimes (t + t^*), \, \omega_1 = \omega_0 = 0.$$

$$\begin{array}{rcl} dF &=& 0,\\ d\hat{F} &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

If [F], $[\hat{F}]$ are integral we can interpret them as Chern classes of T-dual bundles X, \hat{X} .

If A, \hat{A} are connections on X, \hat{X} so that dA = F, $d\hat{A} = \hat{F}$ then

$$\begin{array}{rcl} H &=& H_3 + A \wedge \hat{F}, \\ \hat{H} &=& H_3 + \hat{A} \wedge F, \end{array}$$

are the T-dual 3-forms on X, \hat{X} .

$\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\wedge^2(t + t^*)$ is the Lie algebra of O(n, n). Think of ω_1 as an O(n, n)-connection $\nabla = d + \omega_1$.

 $\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\wedge^2(t + t^*)$ is the Lie algebra of O(n, n). Think of ω_1 as an O(n, n)-connection $\nabla = d + \omega_1$.

The Maurer-Cartan equations become

$$\begin{array}{rcl} F_{\nabla} &=& 0,\\ d_{\nabla}(F,\hat{F}) &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

 $\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\wedge^2(t + t^*)$ is the Lie algebra of O(n, n). Think of ω_1 as an O(n, n)-connection $\nabla = d + \omega_1$.

The Maurer-Cartan equations become

$$\begin{array}{rcl} F_{\nabla} &=& 0,\\ d_{\nabla}(F,\hat{F}) &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

 ∇ is a flat O(n, n) connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

 $\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\wedge^2(t + t^*)$ is the Lie algebra of O(n, n). Think of ω_1 as an O(n, n)-connection $\nabla = d + \omega_1$.

The Maurer-Cartan equations become

$$\begin{array}{rcl} F_{\nabla} &=& 0,\\ d_{\nabla}(F,\hat{F}) &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

 ∇ is a flat O(n, n) connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

Impose integrality: (F, \hat{F}) integral and $O(n, n, \mathbb{Z})$ -holonomy. Interpret as a T^{2n} -bundle $C \to M$.

 $\omega_0 = 0$, but now $\omega_1 \neq 0$. ω_1 is valued in $\wedge^2(t + t^*) \otimes \Omega^1(M)$.

 $\wedge^2(t + t^*)$ is the Lie algebra of O(n, n). Think of ω_1 as an O(n, n)-connection $\nabla = d + \omega_1$.

The Maurer-Cartan equations become

$$\begin{array}{rcl} F_{\nabla} &=& 0,\\ d_{\nabla}(F,\hat{F}) &=& 0,\\ dH_3 + \langle F \wedge \hat{F} \rangle &=& 0. \end{array}$$

 ∇ is a flat O(n, n) connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

Impose integrality: (F, \hat{F}) integral and $O(n, n, \mathbb{Z})$ -holonomy. Interpret as a T^{2n} -bundle $C \to M$. If the monodromy reduces to $GL(n, \mathbb{Z}) \subset O(n, n, \mathbb{Z})$ then we can write C as a fibre product $C = X \times_M \hat{X}$. Think of X, \hat{X} as T-duals.

David Baraglia (ANU)

Courant algebroid approach suggests a T-duality for torus bundles which have both monodromy and Chern classes.

To capture this introduce the group $Aff(T^n) = GL(n, \mathbb{Z}) \ltimes T^n$ of affine transformations of T^n .

Courant algebroid approach suggests a T-duality for torus bundles which have both monodromy and Chern classes.

To capture this introduce the group $Aff(T^n) = GL(n, \mathbb{Z}) \ltimes T^n$ of affine transformations of T^n .

Definition

An **affine torus bundle** is a torus bundle $X \rightarrow M$ with structure group $Aff(T^n)$.

Affine torus bundles have a **monodromy** representation $\rho : \pi_1(M) \to GL(n, \mathbb{Z})$ and a **twisted Chern class** $c \in H^2(M, \Lambda_{\rho})$, where $\Lambda = \mathbb{Z}^n$ and Λ_{ρ} is the corresponding local system.

The data (ρ , *c*) determines *X* and every such pair yields and affine torus bundle. For $n \leq 3$ every torus bundle is affine.

T-duality should dualise monodromy: $\hat{\rho}=\rho^*$

T-duality should dualise monodromy: $\hat{\rho} = \rho^*$

Twisted Chern classes and flux should be interchanged: recall there is a filtration on $H^3(X, \mathbb{Z})$ associated to Leray-Serre SS $\{E_r^{p,q}\}$

$$F^{3,3} \subseteq F^{2,3} \subseteq F^{1,3} \subseteq F^{0,3} = H^3(X,\mathbb{Z}).$$

Say that $h \in H^3(X, \mathbb{Z})$ is **T-dualizable** if $h \in F^{2,3}$ (*h* has "one leg on the fibre").

T-duality should dualise monodromy: $\hat{\rho} = \rho^*$

Twisted Chern classes and flux should be interchanged: recall there is a filtration on $H^3(X, \mathbb{Z})$ associated to Leray-Serre SS $\{E_r^{\rho,q}\}$

$$F^{3,3} \subseteq F^{2,3} \subseteq F^{1,3} \subseteq F^{0,3} = H^3(X,\mathbb{Z}).$$

Say that $h \in H^3(X, \mathbb{Z})$ is **T-dualizable** if $h \in F^{2,3}$ (*h* has "one leg on the fibre").

$$F^{2,3}/F^{3,3} = E_{\infty}^{2,3}$$
 is a subquotient of $E_2^{2,1} = H^2(M, (\Lambda_{\rho})^*) = H^2(M, \Lambda_{\hat{\rho}}).$

This is where the dual twisted Chern class \hat{c} lives, so we demand that \hat{c} projects to image of *h* in $F^{2,3}/F^{3,3}$.

Definition

Let $\pi : X \to M$, $\hat{\pi} : \hat{X} \to M$ be affine torus bundles, monodromy $\rho, \hat{\rho}$, twisted Chern classes c, \hat{c} , T-dualizable fluxes $h \in H^3(X, \mathbb{Z})$, $\hat{h} \in H^3(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^1(M, \mathbb{Z}_2)$.

Definition

Let $\pi : X \to M$, $\hat{\pi} : \hat{X} \to M$ be affine torus bundles, monodromy $\rho, \hat{\rho}$, twisted Chern classes c, \hat{c} , T-dualizable fluxes $h \in H^3(X, \mathbb{Z})$, $\hat{h} \in H^3(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^1(M, \mathbb{Z}_2)$. $(X, \alpha, h), (\hat{X}, \hat{\alpha}, \hat{h})$ are **T-dual** if $\hat{a} = \hat{a}^*$

- $\hat{\rho} = \rho^*$
- Image of \hat{c} in $E_{\infty}^{2,1}(\pi) = F^{2,3}/F^{3,3}$ equals *h* mod $F^{3,3}$
- Similarly for c and \hat{h}
- $\hat{\alpha} = \alpha + \det(\rho)$
- *h* and \hat{h} agree on $X \times_M \hat{X}$.

Definition

Let $\pi : X \to M$, $\hat{\pi} : \hat{X} \to M$ be affine torus bundles, monodromy ρ , $\hat{\rho}$, twisted Chern classes c, \hat{c} , T-dualizable fluxes $h \in H^3(X, \mathbb{Z})$, $\hat{h} \in H^3(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^1(M, \mathbb{Z}_2)$. $(X, \alpha, h), (\hat{X}, \hat{\alpha}, \hat{h})$ are **T-dual** if $\hat{\rho} = \rho^*$ Image of \hat{c} in $E_{\infty}^{2,1}(\pi) = F^{2,3}/F^{3,3}$ equals $h \mod F^{3,3}$ Similarly for c and \hat{h} $\hat{\alpha} = \alpha + \det(\rho)$

• *h* and \hat{h} agree on $X \times_M \hat{X}$.

Actually this last property is too weak: ((2.7) in Bunke, Rumpf, Schick).

T-duality with monodromy 4

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$. Set $w_1 = w_1(V_{\rho})$, $W_3 = W_3(V_{\rho})$.

Say (*X*, α , *h*) is **T-dualizable in twisted K-theory** if (β = Bockstein)

$$W_3 + \beta(\alpha W_1) = 0.$$

This condition is T-duality invariant.

T-duality with monodromy 4

 ρ determines a flat vector bundle $V_{\rho} = \Lambda_{\rho} \otimes \mathbb{R}$. Set $w_1 = w_1(V_{\rho})$, $W_3 = W_3(V_{\rho})$.

Say (*X*, α , *h*) is **T-dualizable in twisted K-theory** if (β = Bockstein)

$$W_3 + \beta(\alpha W_1) = 0.$$

This condition is T-duality invariant.

Theorem

If (X, α, h) , $(\hat{X}, \hat{\alpha}, \hat{h})$ be are T-duals of rank n, T-dualizable in twisted K-theory then we have isomorphisms

$$\mathcal{K}^*(X,(lpha,h))\simeq \mathcal{K}^{*-n}(\hat{X},(\hat{lpha},\hat{h})),$$

$$H^*(X, (\alpha, h)) \simeq H^{*-n}(\hat{X}, (\hat{\alpha}, \hat{h})).$$

Example

 $M = T^2$, $\pi_1(M) = \mathbb{Z}^2$ generated by x, y say.

Monodromy $\rho : \pi_1(M) \to SL(2,\mathbb{Z})$ as follows:

$$\rho(\mathbf{x}) = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}, \quad \rho(\mathbf{y}) = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.

Example

 $M = T^2$, $\pi_1(M) = \mathbb{Z}^2$ generated by x, y say.

Monodromy $\rho : \pi_1(M) \to SL(2,\mathbb{Z})$ as follows:

$$\rho(\mathbf{x}) = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}, \quad \rho(\mathbf{y}) = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.

 Λ_{ρ} the corresponding \mathbb{Z}^2 -valued local system.

 $H^2(M, \Lambda_{\rho}) = \mathbb{Z}$. Affine T^2 -bundles on M with monodromy ρ are classified by an integer $j \in \mathbb{Z}$. Let $E_j \to M$ be the corresponding torus bundle.

Example

 $M = T^2$, $\pi_1(M) = \mathbb{Z}^2$ generated by x, y say.

Monodromy $\rho : \pi_1(M) \to SL(2,\mathbb{Z})$ as follows:

$$\rho(\mathbf{x}) = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}, \quad \rho(\mathbf{y}) = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.

 Λ_{ρ} the corresponding \mathbb{Z}^2 -valued local system.

 $H^2(M, \Lambda_{\rho}) = \mathbb{Z}$. Affine T^2 -bundles on M with monodromy ρ are classified by an integer $j \in \mathbb{Z}$. Let $E_j \to M$ be the corresponding torus bundle.

Let $F^{2,3}(E_j) \subseteq H^3(E_j,\mathbb{Z})$ be the subgroup of T-dualisable flux. We find

$$F^{2,3}(E_j) = \begin{cases} \mathbb{Z}, & j=0\\ \mathbb{Z}_j, & j \neq 0 \end{cases}$$

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_k \in H^3(E_j, \mathbb{Z})$. By construction $h_{k+j} = h_k$.
An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_k \in H^3(E_j, \mathbb{Z})$. By construction $h_{k+j} = h_k$.

The pair (E_j, h_k) is classified by the pair of integers (j, k).

The relation $h_{k+j} = h_k$ induces an equivalence relation $(j, k) \sim (j, k+j)$ (is actually a kind of *B*-shift).

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_k \in H^3(E_j, \mathbb{Z})$. By construction $h_{k+j} = h_k$.

The pair (E_j, h_k) is classified by the pair of integers (j, k).

The relation $h_{k+j} = h_k$ induces an equivalence relation $(j, k) \sim (j, k+j)$ (is actually a kind of *B*-shift).

T-duality corresponds to the interchange $(j, k) \mapsto (k, j)$.

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_k \in H^3(E_j, \mathbb{Z})$. By construction $h_{k+j} = h_k$.

The pair (E_j, h_k) is classified by the pair of integers (j, k).

The relation $h_{k+j} = h_k$ induces an equivalence relation $(j, k) \sim (j, k+j)$ (is actually a kind of *B*-shift).

T-duality corresponds to the interchange $(j, k) \mapsto (k, j)$.

Let $K^{i}(j,k) = K^{i}(E_{j},h_{k})$. So

$$\begin{array}{lll} \mathcal{K}^{i}(j,k) &=& \mathcal{K}^{i}(j,k+j), \\ \mathcal{K}^{i}(j,k) &=& \mathcal{K}^{i-2}(k,j) = \mathcal{K}^{i}(k,j) \end{array}$$

by *B*-shifts and T-duality.

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted *K*-theory groups. An extension problem prevents calculation of the other groups.

i	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$
	<i>j</i> = 0, <i>k</i> = 0	$j = 0, k \neq 0$	$j \neq 0, j k$	j eq 0, j eq k
0	\mathbb{Z}^4	$\mathbb{Z}^2\oplus\mathbb{Z}_k$	*	*
1	\mathbb{Z}^6	$\mathbb{Z}^4\oplus\mathbb{Z}_k$	$\mathbb{Z}^4\oplus\mathbb{Z}_j$	$\mathbb{Z}^4 \oplus \mathbb{Z}_{\mathrm{gcd}(j,k)}$

i	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$
	<i>j</i> = 0, <i>k</i> = 0	$j = 0, k \neq 0$	$j \neq 0, j k$	j eq 0, j eq k
0	\mathbb{Z}^4	$\mathbb{Z}^2\oplus\mathbb{Z}_k$	$\mathbb{Z}^2\oplus\mathbb{Z}_j$	*
1	\mathbb{Z}^6	$\mathbb{Z}^4\oplus\mathbb{Z}_k$	$\mathbb{Z}^4\oplus\mathbb{Z}_j$	$\mathbb{Z}^4\oplus\mathbb{Z}_{\mathrm{gcd}(j,k)}$

By T-duality $\mathcal{K}^0(j,0) = \mathcal{K}^0(0,j) = \mathbb{Z}^2 \oplus \mathbb{Z}_j$.

i	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$
	<i>j</i> = 0, <i>k</i> = 0	$j = 0, k \neq 0$	$j \neq 0, j k$	j eq 0, j eq k
0	\mathbb{Z}^4	$\mathbb{Z}^2\oplus\mathbb{Z}_k$	$\mathbb{Z}^2\oplus\mathbb{Z}_j$	*
1	\mathbb{Z}^6	$\mathbb{Z}^4\oplus\mathbb{Z}_k$	$\mathbb{Z}^4\oplus\mathbb{Z}_j$	$\mathbb{Z}^4\oplus\mathbb{Z}_{\mathrm{gcd}(j,k)}$

By T-duality $K^0(j, 0) = K^0(0, j) = \mathbb{Z}^2 \oplus \mathbb{Z}_j$. For $K^0(j, k)$ we make repeated use of $(j, k) \sim (j, k + j)$ and $(j, k) \sim (k, j)$.

i	$K^i(j,k)$	$K^i(j,k)$	$K^i(j,k)$	$K^{i}(j,k)$
	<i>j</i> = 0, <i>k</i> = 0	$j = 0, k \neq 0$	$j \neq 0, j k$	j eq 0, j eq k
0	\mathbb{Z}^4	$\mathbb{Z}^2\oplus\mathbb{Z}_k$	$\mathbb{Z}^2\oplus\mathbb{Z}_j$	$\mathbb{Z}^2 \oplus \mathbb{Z}_{\gcd(j,k)}$
1	\mathbb{Z}^6	$\mathbb{Z}^4\oplus\mathbb{Z}_k$	$\mathbb{Z}^4\oplus\mathbb{Z}_j$	$\mathbb{Z}^4\oplus\mathbb{Z}_{\mathrm{gcd}(j,k)}$

By T-duality $\mathcal{K}^0(j,0) = \mathcal{K}^0(0,j) = \mathbb{Z}^2 \oplus \mathbb{Z}_j$.

For $K^0(j, k)$ we make repeated use of $(j, k) \sim (j, k + j)$ and $(j, k) \sim (k, j)$. Use **Euclidean algorithm** to get $K^0(j, k) \simeq K^0(\operatorname{gcd}(j, k), 0) = \mathbb{Z}^2 \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$.

Recall that $TX \oplus T^*X$ with untwisted Dorfman bracket has symmetries by closed 2-forms.

There is actually a second kind of symmetry

$$X + \xi \mapsto X + c\xi$$

where *c* is a non-zero constant.

Recall that $TX \oplus T^*X$ with untwisted Dorfman bracket has symmetries by closed 2-forms.

There is actually a second kind of symmetry

 $X + \xi \mapsto X + c\xi$

where *c* is a non-zero constant.

This action of \mathbb{R}^{\times} preserves the Dorfman bracket but only preserves the pairing \langle , \rangle **up to scale**.

Suggests a modification of Courant algebroid axioms that replaces \langle , \rangle by a conformal structure.

Definition

Definition

A conformal Courant algebroid on a smooth manifold X consists of

- A vector bundle *E*,
- A line bundle L with E-connection ∇ ,
- A bundle map $\rho: E \to TX$ called the **anchor**,
- A non-degenerate symmetric bilinear form $\langle , \rangle : E \otimes E \to L$,
- An ℝ-bilinear operation [,]: Γ(E) ⊗_ℝ Γ(E) → Γ(E) on sections of E, the Dorfman bracket,

such that

Definition

Definition

A conformal Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A line bundle L with E-connection ∇ ,
- A bundle map $\rho: E \to TX$ called the **anchor**,
- A non-degenerate symmetric bilinear form $\langle , \rangle : E \otimes E \rightarrow L$,
- An ℝ-bilinear operation [,]: Γ(E) ⊗_ℝ Γ(E) → Γ(E) on sections of E, the Dorfman bracket,

such that for all $a, b, c \in \Gamma(E), f \in \Gamma(L)$ CA1 [a, [b, c]] = [[a, b], c] + [b, [a, c]],CA2 $\rho[a, b] = [\rho(a), \rho(b)],$ CA3 $[a, fb] = \rho(a)(f)b + f[a, b],$ CA4 $[a, b] + [b, a] = \nabla \langle a, b \rangle,$ CA5 $\nabla_a \langle b, c \rangle = \langle [a, b], c \rangle + \langle a, [b, c] \rangle$

Exact conformal Courant algebroids

Definition

A conformal Courant algebroid *E* is **exact** if the sequence $0 \rightarrow T^*X \otimes L \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \rightarrow 0$ is exact.

Exact conformal Courant algebroids

Definition

A conformal Courant algebroid *E* is **exact** if the sequence $0 \rightarrow T^*X \otimes L \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \rightarrow 0$ is exact.

Theorem

Isomorphism classes of exact Courant algebroids on X correspond to pairs (ϵ, H) with $\epsilon \in H^1(X, \mathbb{R}^{\times})$ representing a flat real line bundle L and $H \in H^3(X, L)$, modulo the equivalence $(\epsilon, H) \sim (\epsilon, cH)$ for $c \in \mathbb{R}^{\times}$. Given (L, ∇) and d_{∇} -closed 3-form H a representative Courant algebroid for (L, ∇) , [H] is given by

• $E = TX \oplus (L \otimes T^*X)$ with obvious anchor and symmetric bilinear pairing

•
$$[X + \xi, Y + \eta]_{L,H} = [X, Y] + \mathcal{L}_X^{\nabla} \eta - i_Y d_{\nabla} \xi + i_X i_Y H$$

Definition

A conformal Courant algebroid *E* is **exact** if the sequence $0 \rightarrow T^*X \otimes L \xrightarrow{\rho^*} E \xrightarrow{\rho} TX \rightarrow 0$ is exact.

Theorem

Isomorphism classes of exact Courant algebroids on X correspond to pairs (ϵ, H) with $\epsilon \in H^1(X, \mathbb{R}^{\times})$ representing a flat real line bundle L and $H \in H^3(X, L)$, modulo the equivalence $(\epsilon, H) \sim (\epsilon, cH)$ for $c \in \mathbb{R}^{\times}$. Given (L, ∇) and d_{∇} -closed 3-form H a representative Courant algebroid for (L, ∇) , [H] is given by

• $E = TX \oplus (L \otimes T^*X)$ with obvious anchor and symmetric bilinear pairing

•
$$[X + \xi, Y + \eta]_{L,H} = [X, Y] + \mathcal{L}_X^{\nabla} \eta - i_Y d_{\nabla} \xi + i_X i_Y H$$

Call [,]_{*L*,*H*} the (*L*, *H*)-twisted Dorfman bracket on $E = TX \oplus T^*X \otimes L$.

ϵ -twisted graded gerbes

From now on take $\epsilon \in H^1(X, \mathbb{Z}_2) \subseteq H^1(X, \mathbb{R}^{\times})$, so *L* is a flat orthogonal line bundle. Let ϵ_{ij} be a Čech cocycle representing ϵ .

ϵ -twisted graded gerbes

From now on take $\epsilon \in H^1(X, \mathbb{Z}_2) \subseteq H^1(X, \mathbb{R}^{\times})$, so *L* is a flat orthogonal line bundle. Let ϵ_{ij} be a Čech cocycle representing ϵ .

Definition

An ϵ -twisted graded gerbe $\mathcal{G} = (L_{ij}, \alpha_{ij}, \theta_{ijk})$ consists of

- a \mathbb{Z}_2 -graded U(1)-line bundle L_{ij} on each U_{ij}
- an isomorphism $\theta_{ijk}: L_{ij}^{\epsilon_{jk}}\otimes L_{jk} \to L_{ik}$ on each U_{ijk}

such that the θ_{ijk} preserve grading and satisfies an associativity condition.

Where $L^1 = L$, $L^{-1} = L^*$.

ϵ -twisted graded gerbes

From now on take $\epsilon \in H^1(X, \mathbb{Z}_2) \subseteq H^1(X, \mathbb{R}^{\times})$, so *L* is a flat orthogonal line bundle. Let ϵ_{ij} be a Čech cocycle representing ϵ .

Definition

An ϵ -twisted graded gerbe $\mathcal{G} = (L_{ij}, \alpha_{ij}, \theta_{ijk})$ consists of

- a \mathbb{Z}_2 -graded U(1)-line bundle L_{ij} on each U_{ij}
- an isomorphism $\theta_{ijk}: L_{ij}^{\epsilon_{jk}}\otimes L_{jk} \to L_{ik}$ on each U_{ijk}

such that the θ_{ijk} preserve grading and satisfies an associativity condition.

Where $L^1 = L$, $L^{-1} = L^*$.

Graded gerbes up to stable isomorphism are classified by $H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z}_{\epsilon})$ where \mathbb{Z}_{ϵ} is the \mathbb{Z} -valued local system obtained from ϵ .

Definition

A **connection** on \mathcal{G} is a choice of unitary connection ∇_{ij} for each L_{ij} such that the θ_{ijk} are constant.

Let F_{ij} be the curvature of ∇_{ij} . The F_{ij} are closed 2-forms and

$$\epsilon_{jk}F_{ij}+F_{jk}+F_{ik}=0.$$

Twisted generalised tangent bundle revisited

As before obtain a bundle *E* which over U_i looks like $TX \oplus T^*X|_{U_i}$. This time introduce transitions $(-1)^{\epsilon_{ij}} e^{F_{ij}} \in \mathbb{Z}_2 \ltimes \Omega^2_{cl}(X)$. As before obtain a bundle *E* which over U_i looks like $TX \oplus T^*X|_{U_i}$.

This time introduce transitions $(-1)^{\epsilon_{ij}} e^{F_{ij}} \in \mathbb{Z}_2 \ltimes \Omega^2_{cl}(X)$.

The transitions preserve the conformal Courant algebroid structure on $TX \oplus T^*X$, so *E* becomes and exact conformal Courant algebroid.

As before obtain a bundle *E* which over U_i looks like $TX \oplus T^*X|_{U_i}$.

This time introduce transitions $(-1)^{\epsilon_{ij}} e^{F_{ij}} \in \mathbb{Z}_2 \ltimes \Omega^2_{cl}(X)$.

The transitions preserve the conformal Courant algebroid structure on $TX \oplus T^*X$, so *E* becomes and exact conformal Courant algebroid.

This time instead of a spin structure we consider a $\mathbb{Z}_2 \ltimes Spin(n, n)$ structure. We get a kind of \mathbb{Z}_4 -graded spinor bundle S^t which over U_i looks like

$$S^t|_{U_i} = \bigoplus_{k \in \mathbb{Z}} L^k \otimes \bigwedge^{t+2\kappa} T^*X$$

but globally gets twisted. Still get a differential $D : \Gamma(S^t) \to \Gamma(S^{t+1})$.

Definition

A **curving** for an ϵ -twisted gerbe with connection $(\mathcal{G}, \nabla_{ij})$ is a collection of 2-forms B_i such that $B_j - \epsilon_{ij}B_i = F_{ij}$. The locally defined 3-forms $H_i = dB_i$ satisfy $H_i = \epsilon_{ij}H_j$, so define a d_{∇} -closed 3-form $H \in \Omega^3(X, L)$ called the **curvature**. $[H] \in H^3(X, L)$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

Definition

A **curving** for an ϵ -twisted gerbe with connection $(\mathcal{G}, \nabla_{ij})$ is a collection of 2-forms B_i such that $B_j - \epsilon_{ij}B_i = F_{ij}$. The locally defined 3-forms $H_i = dB_i$ satisfy $H_i = \epsilon_{ij}H_j$, so define a d_{∇} -closed 3-form $H \in \Omega^3(X, L)$ called the **curvature**. $[H] \in H^3(X, L)$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

As before curving yields an isomorphism $\phi : E \simeq TX \oplus (L \otimes T^*X)$.

Under ϕ the Courant bracket on *E* maps to the (*L*, *H*)-twisted Courant bracket on $TX \oplus (L \otimes T^*X)$.

Similarly a curving yields an isomorphism of the spin bundle *S*:

$$S^i \simeq \bigoplus_{k \in \mathbb{Z}} A \otimes L^k \otimes \bigwedge^{i+2k} T^* X$$

where *A* is the \mathbb{Z}_2 -line bundle *A* corresponding to the grading class $[\alpha] \in H^1(X, \mathbb{Z}_2)$.

Similarly a curving yields an isomorphism of the spin bundle *S*:

$$S^i \simeq igoplus_{k \in \mathbb{Z}} A \otimes L^k \otimes igwedge^{i+2k} T^* X$$

where *A* is the \mathbb{Z}_2 -line bundle *A* corresponding to the grading class $[\alpha] \in H^1(X, \mathbb{Z}_2)$.

The operator *D* becomes the **twisted differential** $d_{\nabla,H}: \Gamma(S^i) \to \Gamma(S^{i+1})$ given by:

$$\mathbf{d}_{\nabla,\mathbf{H}}\omega = \mathbf{d}_{\nabla}\omega + \mathbf{H}\wedge\omega$$

where ∇ denotes the flat connection on the various $A \otimes L^k$.

Let $H^*_{\epsilon}(X, (\alpha, H))$ denote the (\mathbb{Z}_4 -graded) cohomology groups.

We conjecture that $H^*_{\epsilon}(X, (\alpha, H))$ is the target for a Chern character in **twisted KR-theory**.

Let $\pi : X \to M$ be a torus bundle, $\epsilon \in H^1(M, \mathbb{Z}_2)$ and \mathcal{G} an ϵ -twisted graded gerbe on X with class $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z}_{\epsilon})$.

Let $\pi : X \to M$ be a torus bundle, $\epsilon \in H^1(M, \mathbb{Z}_2)$ and \mathcal{G} an ϵ -twisted graded gerbe on X with class $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z}_{\epsilon})$.

As before invariant sections yield a conformal Courant algebroid $E_{\text{red}}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

Let $\pi : X \to M$ be a torus bundle, $\epsilon \in H^1(M, \mathbb{Z}_2)$ and \mathcal{G} an ϵ -twisted graded gerbe on X with class $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z}_{\epsilon})$.

As before invariant sections yield a conformal Courant algebroid $E_{\text{red}}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

Choosing a connection on X we have that

$$E_{\rm red}(X,\mathcal{G})=TM\oplus V\oplus (L\otimes V^*)\oplus (L\otimes T^*M)$$

where *V* is the vertical bundle (the flat $GL(n, \mathbb{Z})$ vector bundle associated to the monodromy).

Let $\pi : X \to M$ be a torus bundle, $\epsilon \in H^1(M, \mathbb{Z}_2)$ and \mathcal{G} an ϵ -twisted graded gerbe on X with class $(\alpha, h) \in H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z}_{\epsilon})$.

As before invariant sections yield a conformal Courant algebroid $E_{\text{red}}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

Choosing a connection on X we have that

$$E_{\rm red}(X,\mathcal{G})=TM\oplus V\oplus (L\otimes V^*)\oplus (L\otimes T^*M)$$

where *V* is the vertical bundle (the flat $GL(n, \mathbb{Z})$ vector bundle associated to the monodromy).

Roughly speaking T-duality should interchange the inner two factors. This leads to a definition of T-duality for torus bundles with ϵ -twisted graded gerbes.

Skip to an example.

Skip to an example.

Let $M = S^1$, $\epsilon = \hat{\epsilon}$ the non-trivial class in $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$. Take $X = T^2$ and trivial twisted graded gerbe.

Skip to an example.

Let $M = S^1$, $\epsilon = \hat{\epsilon}$ the non-trivial class in $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$. Take $X = T^2$ and trivial twisted graded gerbe.

Then one finds that $\hat{X} = K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.

Skip to an example.

Let $M = S^1$, $\epsilon = \hat{\epsilon}$ the non-trivial class in $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$. Take $X = T^2$ and trivial twisted graded gerbe.

Then one finds that $\hat{X} = K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.

We proved there is an isomorphism in twisted cohomologies

$$H^{i}_{\epsilon}(T^{2},(0,0))=H^{i-1}_{\epsilon}(K,(0,0)).$$

Skip to an example.

Let $M = S^1$, $\epsilon = \hat{\epsilon}$ the non-trivial class in $H^1(S^1, \mathbb{Z}_2) = \mathbb{Z}_2$. Take $X = T^2$ and trivial twisted graded gerbe.

Then one finds that $\hat{X} = K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.

We proved there is an isomorphism in twisted cohomologies

$$H^{i}_{\epsilon}(T^{2},(0,0)) = H^{i-1}_{\epsilon}(K,(0,0)).$$

We conjecture this extends to twisted *KR*-theory. The missing ingredients are Mayer-Vietoris and a push-forward in twisted *KR*-theory. In this case we should have an isomorphism

$$KR^i(T^2_\epsilon) = KR^{i-1}(K_\epsilon).$$
Using a spectral sequence computation we get:

i	$KR^i(T_\epsilon^2)$	$KR^i(K_{\epsilon})$
0	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}^2
1	\mathbb{Z}^2	\mathbb{Z}
2	Z	\mathbb{Z}_2
3	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_{2}$

Note: generally *KR* is 8-periodic, but in this example 4-periodic. We see that $KR^{i}(T_{\epsilon}^{2}) = KR^{i-1}(K_{\epsilon})$ is satisfied.