Monodromy and orientifolds in T-duality via Courant algebroids

David Baraglia
The Australian National University
Canberra, Australia

Group-valued moment maps with applications to mathematics and physics
University of Adelaide, 8 September

This talk is based on

Topological T-duality for general circle bundles arXiv:1105.0290v2
Conformal Courant algebroids and orientifold T-duality,

$$
\begin{gathered}
\text { arXiv: } 1109.0875 \mathrm{v} 1 \\
\text { and }
\end{gathered}
$$

Topological T-duality for torus bundles with monodromy, (in preparation)

Overview

Aim of this talk is to demonstrate how the structure of Courant algebroids can offer some new insights into T-duality.

First review Courant algebroids, their relation with T-duality.
Then look at T-duality with monodromy.
Finally look at T-duality for (a very simple class of) orientifolds.

Courant algebroids

Definition

A Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A bundle map $\rho: E \rightarrow T X$ called the anchor,
- A non-degenerate symmetric bilinear form $\langle\rangle:, E \otimes E \rightarrow \mathbb{R}$,
- An \mathbb{R}-bilinear operation [,] : $\Gamma(E) \otimes_{\mathbb{R}} \Gamma(E) \rightarrow \Gamma(E)$ on sections of E, the Dorfman bracket,
such that

Courant algebroids

Definition

A Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A bundle map $\rho: E \rightarrow T X$ called the anchor,
- A non-degenerate symmetric bilinear form $\langle\rangle:, E \otimes E \rightarrow \mathbb{R}$,
- An \mathbb{R}-bilinear operation [,] : $\Gamma(E) \otimes_{\mathbb{R}} \Gamma(E) \rightarrow \Gamma(E)$ on sections of E, the Dorfman bracket,
such that for all $a, b, c \in \Gamma(E), f \in \mathcal{C}^{\infty}(X)$
CA1 $[a,[b, c]]=[[a, b], c]+[b,[a, c]]$,
CA2 $\rho[a, b]=[\rho(a), \rho(b)]$,
САЗ $[a, f b]=\rho(a)(f) b+f[a, b]$,
CA4 $[a, b]+[b, a]=\rho^{*} d\langle a, b\rangle$,
CA5 $\rho(a)\langle b, c\rangle=\langle[a, b], c\rangle+\langle a,[b, c]\rangle$

Remark

The skew-symmetrisation of [,] is called the Courant bracket.

Remark

The skew-symmetrisation of $[$,$] is called the Courant bracket.$
$\Gamma(E)$ with the Courant bracket can be made into to a Lie 2-algebra with two term complex

$$
\mathcal{C}^{\infty}(X) \xrightarrow{\rho^{*} \circ d} \Gamma(E)
$$

Exact Courant algebroids

Definition

A Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Exact Courant algebroids

Definition

A Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Theorem (Ševera)

Isomorphism classes of exact Courant algebroids on X are in bijection with $H^{3}(X, \mathbb{R})$. If H is a closed 3 -form on X then a representative Courant algebroid for $[H]$ is given by

- $E=T X \oplus T^{*} X$ with obvious anchor and symmetric bilinear pairing
- $[X+\xi, Y+\eta]_{H}=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi+i_{X} i_{Y} H$

Exact Courant algebroids

Definition

A Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Theorem (Ševera)

Isomorphism classes of exact Courant algebroids on X are in bijection with $H^{3}(X, \mathbb{R})$. If H is a closed 3 -form on X then a representative Courant algebroid for $[H]$ is given by

- $E=T X \oplus T^{*} X$ with obvious anchor and symmetric bilinear pairing
- $[X+\xi, Y+\eta]_{H}=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi+i_{X} i_{Y} H$

Call $[,]_{H}$ the H-twisted Dorfman bracket on $E=T X \oplus T^{*} X$.

The untwisted generalised tangent bundle

Definition

$E=T X \oplus T^{*} X$ is called the (untwisted) generalised tangent bundle. The natural pairing \langle,$\rangle and orientation gives E$ an $S O(n, n)$-structure.

The untwisted generalised tangent bundle

Definition

$E=T X \oplus T^{*} X$ is called the (untwisted) generalised tangent bundle. The natural pairing \langle,$\rangle and orientation gives E$ an $S O(n, n)$-structure.

There is a homomorphism $G L(n, \mathbb{R}) \rightarrow \operatorname{Spin}(n, n)$ which gives E a spin structure, but for T-duality all spin structures must be considered.

The untwisted generalised tangent bundle

Definition

$E=T X \oplus T^{*} X$ is called the (untwisted) generalised tangent bundle. The natural pairing \langle,$\rangle and orientation gives E$ an $S O(n, n)$-structure.

There is a homomorphism $G L(n, \mathbb{R}) \rightarrow \operatorname{Spin}(n, n)$ which gives E a spin structure, but for T-duality all spin structures must be considered.

The untwisted Dorfman bracket $[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi$ makes E a Courant algebroid.

Symmetry group of E : $\operatorname{Diff}(X) \ltimes \Omega_{\mathrm{cl}}^{2}(X)$. A closed 2-form B acts by a B-shift:

$$
e^{B}(X+\xi)=X+\xi+i_{X} B
$$

where X is a tangent vector and ξ a 1 -form.

Spinors for the generalised tangent bundle

The spin bundle S for E with the spin structure inherited from the homomorphism $G L(n, \mathbb{R}) \rightarrow \operatorname{Spin}(n, n)$ is given by $S=\Lambda^{*} T^{*} X$

Spinors for the generalised tangent bundle

The spin bundle S for E with the spin structure inherited from the homomorphism $G L(n, \mathbb{R}) \rightarrow \operatorname{Spin}(n, n)$ is given by $S=\Lambda^{*} T^{*} X$
Actually it's $\bigwedge^{*} T^{*} X \otimes\left|\operatorname{det}\left(T^{*} X\right)\right|^{-1 / 2}$. Neglect extra factor by choosing a density on X.

Spinors for the generalised tangent bundle

The spin bundle S for E with the spin structure inherited from the homomorphism $G L(n, \mathbb{R}) \rightarrow \operatorname{Spin}(n, n)$ is given by $S=\Lambda^{*} T^{*} X$
Actually it's $\bigwedge^{*} T^{*} X \otimes\left|\operatorname{det}\left(T^{*} X\right)\right|^{-1 / 2}$. Neglect extra factor by choosing a density on X.

$$
S=S_{+} \oplus S_{-}
$$

where $S_{+}=\Lambda^{\text {even }} T^{*} X, S_{-}=\Lambda^{\text {odd }} T^{*} X$.
The exterior derivative d defines a differential

$$
D: \Gamma\left(S_{ \pm}\right) \rightarrow \Gamma\left(S_{\mp}\right)
$$

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\left\{U_{i}\right\}$ ($U_{i j}=U_{i} \cap U_{j}$ and so on).

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\left\{U_{i}\right\}$ ($U_{i j}=U_{i} \cap U_{j}$ and so on).

Definition

A graded gerbe $\mathcal{G}=\left(L_{i j}, \alpha_{i j}, \theta_{i j k}\right)$ consists of

- a $U(1)$-line bundle $L_{i j}$ on each $U_{i j}$,
- a \mathbb{Z}_{2} grading for each line bundle, that is for each $L_{i j}$ an element

$$
\alpha_{i j} \in \mathbb{Z}_{2}
$$

- an isomorphism $\theta_{i j k}: L_{i j} \otimes L_{j k} \rightarrow L_{i k}$ on each $U_{i j k}$
such that the $\theta_{i j k}$ preserve grading and satisfy the obvious associativity condition.

Exact Courant algebroids and graded gerbes

Consider only gerbes defined with respect to an open cover $\left\{U_{i}\right\}$ ($U_{i j}=U_{i} \cap U_{j}$ and so on).

Definition

A graded gerbe $\mathcal{G}=\left(L_{i j}, \alpha_{i j}, \theta_{i j k}\right)$ consists of

- a $U(1)$-line bundle $L_{i j}$ on each $U_{i j}$,
- a \mathbb{Z}_{2} grading for each line bundle, that is for each $L_{i j}$ an element

$$
\alpha_{i j} \in \mathbb{Z}_{2}
$$

- an isomorphism $\theta_{i j k}: L_{i j} \otimes L_{j k} \rightarrow L_{i k}$ on each $U_{i j k}$
such that the $\theta_{i j k}$ preserve grading and satisfy the obvious associativity condition.

The $\theta_{i j k}$ are required to respect the grading, thus $\alpha_{i j}+\alpha_{j k}=\alpha_{i k}$ and $\alpha_{i j}$ defines a class $\alpha \in H^{1}\left(X, \mathbb{Z}_{2}\right)$.
Graded gerbes up to stable isomorphism are classified by $H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}(X, \mathbb{Z})$.

Gerbe connections

Definition

A connection on \mathcal{G} is a choice of unitary connection $\nabla_{i j}$ for each $L_{i j}$ such that the $\theta_{i j k}$ are constant.

Let $F_{i j}$ be the curvature of $\nabla_{i j}$. The $F_{i j}$ are closed 2 -forms and

$$
F_{i j}+F_{j k}+F_{i k}=0
$$

Twisted generalised tangent bundle

The generalised tangent bundle $T X \oplus T^{*} X$ can be twisted by a gerbe.

Twisted generalised tangent bundle

The generalised tangent bundle $T X \oplus T^{*} X$ can be twisted by a gerbe. Define a bundle $E=E\left(\mathcal{G}, \nabla_{i j}\right)$ as follows:

We set $\left.E\right|_{U_{i}}=\left.T X \oplus T^{*} X\right|_{U_{i}}$. On $U_{i j}$ patch copies of $T X \oplus T^{*} X$ together using a B-shift by the closed 2 -form $F_{i j}$.

Twisted generalised tangent bundle

The generalised tangent bundle $T X \oplus T^{*} X$ can be twisted by a gerbe. Define a bundle $E=E\left(\mathcal{G}, \nabla_{i j}\right)$ as follows:

We set $\left.E\right|_{U_{i}}=\left.T X \oplus T^{*} X\right|_{U_{i}}$. On $U_{i j}$ patch copies of $T X \oplus T^{*} X$ together using a B-shift by the closed 2 -form $F_{i j}$.
So a section of E is a collection $\left\{\left(X_{i}, \xi_{i}\right)\right\},\left(X_{i}, \xi_{i}\right) \in \Gamma\left(T X \oplus T^{*} X, U_{i}\right)$ such that on $U_{i j}$

$$
\begin{aligned}
X_{i} & =X_{j} \\
\xi_{i} & =\xi_{j}+i_{X_{j}} F_{i j}
\end{aligned}
$$

Twisted generalised tangent bundle

The generalised tangent bundle $T X \oplus T^{*} X$ can be twisted by a gerbe.
Define a bundle $E=E\left(\mathcal{G}, \nabla_{i j}\right)$ as follows:
We set $\left.E\right|_{U_{i}}=\left.T X \oplus T^{*} X\right|_{U_{i}}$. On $U_{i j}$ patch copies of $T X \oplus T^{*} X$ together using a B-shift by the closed 2 -form $F_{i j}$.
So a section of E is a collection $\left\{\left(X_{i}, \xi_{i}\right)\right\},\left(X_{i}, \xi_{i}\right) \in \Gamma\left(T X \oplus T^{*} X, U_{i}\right)$ such that on $U_{i j}$

$$
\begin{aligned}
X_{i} & =X_{j} \\
\xi_{i} & =\xi_{j}+i_{X_{j}} F_{i j}
\end{aligned}
$$

The transitions $e^{F_{i j}}$ are symmetries of $\left.T X \oplus T^{*} X\right|_{U_{i}}$ as a Courant algebroid. Thus E becomes a Courant algebroid. Call E a twisted generalised tangent bundle.

Twisted spinor bundle

Also get a spin structure on E.
To define it we introduce a twisted spin bundle $S=S\left(\mathcal{G}, \nabla_{i j}\right)$.

Twisted spinor bundle

Also get a spin structure on E.
To define it we introduce a twisted spin bundle $S=S\left(\mathcal{G}, \nabla_{i j}\right)$.
Set $\left.S\right|_{U_{i}}=\left.\Lambda^{*} T^{*} X\right|_{U_{i}}$.
On $U_{i j}$ introduce the following transitions:

$$
\omega_{i}=(-1)^{\alpha_{i j}} e^{-F_{i j}} \wedge \omega_{j}=(-1)^{\alpha_{i j}}\left(\omega_{j}-F_{i j} \wedge \omega_{j}+\frac{1}{2} F_{i j} \wedge F_{i j} \wedge \omega_{j}+\ldots\right)
$$

Twisted spinor bundle

Also get a spin structure on E.
To define it we introduce a twisted spin bundle $S=S\left(\mathcal{G}, \nabla_{i j}\right)$.
Set $\left.S\right|_{U_{i}}=\left.\Lambda^{*} T^{*} X\right|_{U_{i}}$.
On $U_{i j}$ introduce the following transitions:

$$
\omega_{i}=(-1)^{\alpha_{i j}} e^{-F_{i j}} \wedge \omega_{j}=(-1)^{\alpha_{i j}}\left(\omega_{j}-F_{i j} \wedge \omega_{j}+\frac{1}{2} F_{i j} \wedge F_{i j} \wedge \omega_{j}+\ldots\right)
$$

Since the $F_{i j}$ are closed we still get a differential $D: \Gamma\left(S_{ \pm}\right) \rightarrow \Gamma\left(S_{\mp}\right)$.
Notice how the grading $\left\{\alpha_{i j}\right\}$ affects the $\operatorname{Spin}(n, n)$ transition functions.

Splitting the structure

Definition

A curving for a gerbe with connection $\left(\mathcal{G}, \nabla_{i j}\right)$ is a collection of 2 -forms B_{i} such that $B_{j}-B_{i}=F_{i j}$. There is a unique 3 -form H such that $\left.H\right|_{U_{i}}=d B_{i}$ called the curvature. $[H] \in H^{3}(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

Splitting the structure

Definition

A curving for a gerbe with connection $\left(\mathcal{G}, \nabla_{i j}\right)$ is a collection of 2-forms B_{i} such that $B_{j}-B_{i}=F_{i j}$. There is a unique 3 -form H such that $\left.H\right|_{U_{i}}=d B_{i}$ called the curvature. $[H] \in H^{3}(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

A curving yields an explicit vector bundle isomorphism $\phi: E \simeq T X \oplus T^{*} X$.

Splitting the structure

Definition

A curving for a gerbe with connection $\left(\mathcal{G}, \nabla_{i j}\right)$ is a collection of 2-forms B_{i} such that $B_{j}-B_{i}=F_{i j}$. There is a unique 3-form H such that $\left.H\right|_{U_{i}}=d B_{i}$ called the curvature. $[H] \in H^{3}(X, \mathbb{R})$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

A curving yields an explicit vector bundle isomorphism $\phi: E \simeq T X \oplus T^{*} X$.

Under ϕ the Courant bracket on E maps to the H-twisted Courant bracket on $T X \oplus T^{*} X$.

Conclude: twisting $T X \oplus T^{*} X$ by $\mathcal{G} \Longleftrightarrow$ twisting [,] by H.

Splitting the structure 2

A curving also yields an isomorphism of the spin bundle S :

$$
S \simeq A \otimes \bigwedge^{*} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle corresponding to $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$.

Splitting the structure 2

A curving also yields an isomorphism of the spin bundle S :

$$
S \simeq A \otimes \bigwedge^{*} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle corresponding to $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$. Under ϕ the operator D becomes the twisted differential $d_{\nabla, H}$:

$$
d_{\nabla, H} \omega=d_{\nabla \omega}+H \wedge \omega
$$

where ∇ is the flat connection on A.

Splitting the structure 2

A curving also yields an isomorphism of the spin bundle S :

$$
S \simeq A \otimes \bigwedge^{*} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle corresponding to $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$. Under ϕ the operator D becomes the twisted differential $d_{\nabla, H}$:

$$
d_{\nabla, H} \omega=d_{\nabla \omega}+H \wedge \omega
$$

where ∇ is the flat connection on A.
The (\mathbb{Z}_{2}-graded) cohomology groups $H^{*}(X,(\alpha, H))$ called the twisted cohomology associated to the pair $(\alpha,[H]) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}(X, \mathbb{R})$.

Splitting the structure 2

A curving also yields an isomorphism of the spin bundle S :

$$
S \simeq A \otimes \bigwedge^{*} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle corresponding to $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$. Under ϕ the operator D becomes the twisted differential $d_{\nabla, H}$:

$$
d_{\nabla, H} \omega=d_{\nabla \omega}+H \wedge \omega
$$

where ∇ is the flat connection on A.
The (\mathbb{Z}_{2}-graded) cohomology groups $H^{*}(X,(\alpha, H))$ called the twisted cohomology associated to the pair $(\alpha,[H]) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}(X, \mathbb{R})$. K-theory can be twisted by graded gerbes. There is a Chern character

$$
C h_{\left(\mathcal{G}, \nabla_{i j}, B_{i}\right)}: K^{*}(X, \mathcal{G}) \rightarrow H^{*}(X,(\alpha, H))
$$

Dimensional reduction

Let $\pi: X \rightarrow M$ be a principal circle bundle and $h \in H^{3}(X, \mathbb{Z})$.
Choose an invariant closed 3-form $H \in \Omega^{3}(X)$ representing h over \mathbb{R}.
The generalised tangent bundle $\left(E=T X \oplus T^{*} X,[,]_{H}\right)$ twisted by H admits a lift of the S^{1}-action as symmetries.

Dimensional reduction

Let $\pi: X \rightarrow M$ be a principal circle bundle and $h \in H^{3}(X, \mathbb{Z})$.
Choose an invariant closed 3-form $H \in \Omega^{3}(X)$ representing h over \mathbb{R}.
The generalised tangent bundle $\left(E=T X \oplus T^{*} X,[,]_{H}\right)$ twisted by H admits a lift of the S^{1}-action as symmetries.
The quotient $E_{\text {red }}=E / S^{1}$ is a vector bundle on M such that sections of $E_{\text {red }}$ correspond to invariant sections of E.
$E_{\text {red }}$ inherits the structure of a Courant algebroid (e.g. if a, b are invariant then so is $[a, b]_{H}$).

Dimensional reduction

Let $\pi: X \rightarrow M$ be a principal circle bundle and $h \in H^{3}(X, \mathbb{Z})$.
Choose an invariant closed 3-form $H \in \Omega^{3}(X)$ representing h over \mathbb{R}.
The generalised tangent bundle $\left(E=T X \oplus T^{*} X,[,]_{H}\right)$ twisted by H admits a lift of the S^{1}-action as symmetries.
The quotient $E_{\text {red }}=E / S^{1}$ is a vector bundle on M such that sections of $E_{\text {red }}$ correspond to invariant sections of E.
$E_{\text {red }}$ inherits the structure of a Courant algebroid (e.g. if a, b are invariant then so is $\left.[a, b]_{H}\right)$.
Write $E_{\text {red }}(X, h)$ to indicate dependence on (X, h). Call $E_{\text {red }}(X, h)$ with inherited Courant algebroid structure the dimensional reduction of $\left(E,[,]_{H}\right)$. Note that $E_{\text {red }}$ is not an exact Courant algebroid.

Courant algebroids and T-duality

The link between T-duality and Courant algebroids is:

Theorem

If $(X, h),(\hat{X}, \hat{h})$ are T-dual then the dimensional reductions $E_{\mathrm{red}}(X, h)$, $E_{\text {red }}(\hat{X}, \hat{h})$ are isomorphic as Courant algebroids on M.

Courant algebroids and T-duality

The link between T-duality and Courant algebroids is:

Theorem

If $(X, h),(\hat{X}, \hat{h})$ are T-dual then the dimensional reductions $E_{\text {red }}(X, h)$, $E_{\text {red }}(\hat{X}, \hat{h})$ are isomorphic as Courant algebroids on M.

Definition

Let $(X, h),(\hat{X}, \hat{h})$ be principal circle bundles over M equipped with flux $h \in H^{3}(X, \mathbb{Z}), \hat{h} \in H^{3}(\hat{X}, \mathbb{Z})$. Then $(X, h),(\hat{X}, \hat{h})$ are T-dual if

- $c_{1}(X)=\hat{\pi}_{*}(\hat{h})$,
- $c_{1}(\hat{X})=\pi_{*}(h)$,
- h and \hat{h} agree when pulled back to the fibre product $C=X \times_{M} \hat{X}$, where $\pi, \hat{\pi}$ are the bundle projections $\pi: X \rightarrow M, \hat{\pi}: \hat{X} \rightarrow M$ and $\pi_{*}, \hat{\pi}_{*}$ pushforwards in cohomology (roughly integration over the fibre).

Adding a grading to the gerbes

We can enhance this slightly by using graded gerbes: $h \in H^{3}(X, \mathbb{Z})$ becomes $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}(X, \mathbb{Z})$.
$(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if in addition $\alpha=\hat{\alpha} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.

Adding a grading to the gerbes

We can enhance this slightly by using graded gerbes: $h \in H^{3}(X, \mathbb{Z})$ becomes $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}(X, \mathbb{Z})$.
$(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if in addition $\alpha=\hat{\alpha} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.

Theorem

If $(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual then we have isomorphisms

$$
\begin{aligned}
& H^{*}(X,(\alpha, h))=H^{*-1}(\hat{X},(\hat{\alpha}, \hat{h})), \\
& K^{*}(X,(\alpha, h))=K^{*-1}(\hat{X},(\hat{\alpha}, \hat{h})),
\end{aligned}
$$

in twisted cohomology/K-theory.
Note: for unoriented circle bundles $\alpha \neq \hat{\alpha}$ and the grading becomes necessary.

Transitive Courant algebroids

Much of the structure of (X, h) is captured by the Courant algebroid $E_{\text {red }}(X, h)$ (torsion information is lost however).
$E_{\text {red }}(X, h)$ is not an exact Courant algebroid, but it is transitive: the anchor $\rho: E_{\text {red }}(X, h) \rightarrow T M$ is surjective.

Transitive Courant algebroids

Much of the structure of (X, h) is captured by the Courant algebroid $E_{\text {red }}(X, h)$ (torsion information is lost however).
$E_{\text {red }}(X, h)$ is not an exact Courant algebroid, but it is transitive: the anchor $\rho: E_{\text {red }}(X, h) \rightarrow T M$ is surjective.
There are many transitive Courant algebroids not of the form $E_{\text {red }}(X, h)$.
Studying transitive Courant algebroids gives insights in to T-duality.

Transitive Courant algebroids

Much of the structure of (X, h) is captured by the Courant algebroid $E_{\text {red }}(X, h)$ (torsion information is lost however).
$E_{\text {red }}(X, h)$ is not an exact Courant algebroid, but it is transitive: the anchor $\rho: E_{\text {red }}(X, h) \rightarrow T M$ is surjective.

There are many transitive Courant algebroids not of the form $E_{\text {red }}(X, h)$.
Studying transitive Courant algebroids gives insights in to T-duality.
Remarkably this seems to naturally incorporate many enhancements to T-duality: monodromy, T-folds, orientifolds, heterotic T-duality, Poisson-Lie-T-duality (non-abelian T-duality).

Local description of transitive Courant algebroids

Let V be a real vector space and \langle,$\rangle a non-degenerate bilinear form of$ any signature.

Associated to V is the \mathbb{Z}_{2}-graded Clifford algebra Cliff(V). Taking graded commutators yields a graded Lie algebra $A(V)$.

Surprising fact: $A(V)$ is actually \mathbb{Z}-graded!

$$
A(V)=A_{-2} \oplus A_{-1} \oplus A_{0} \oplus A_{1} \oplus \ldots
$$

where $A_{i}=\wedge^{i+2} V$.

Local description of transitive Courant algebroids

Let V be a real vector space and \langle,$\rangle a non-degenerate bilinear form of$ any signature.
Associated to V is the \mathbb{Z}_{2}-graded Clifford algebra Cliff (V). Taking graded commutators yields a graded Lie algebra $A(V)$.

Surprising fact: $A(V)$ is actually \mathbb{Z}-graded!

$$
A(V)=A_{-2} \oplus A_{-1} \oplus A_{0} \oplus A_{1} \oplus \ldots
$$

where $A_{i}=\wedge^{i+2} V$.
On a smooth manifold M we get an associated dgla

$$
\mathcal{A}=A(V) \otimes \Omega^{*}(M) .
$$

A Maurer-Cartan element for \mathcal{A} is an element $\omega \in \mathcal{A}$ of degree 1 such that $d \omega+\frac{1}{2}[\omega, \omega]=0$.

Local description of transitive Courant algebroids 2

A Maurer-Cartan element determines a Courant algebroid structure on $E=T M \oplus \mathcal{A}_{-1}=T M \oplus V \oplus T^{*} M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.

A global description just involves adding in some $O(V)$-transition functions.

Local description of transitive Courant algebroids 2

A Maurer-Cartan element determines a Courant algebroid structure on $E=T M \oplus \mathcal{A}_{-1}=T M \oplus V \oplus T^{*} M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.
A global description just involves adding in some $O(V)$-transition functions.

For T-duality over n-dimensional fibres let V have signature (n, n). Can write $V=t \oplus t^{*}$ for some rank n vector space t.

The group $O(n, n)$ acts as automorphisms of \mathcal{A}. This action is closely related to T-duality.
$\omega \in \Omega^{3}(M) \oplus\left(t+t^{*}\right) \otimes \Omega^{2}(M) \oplus \wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M) \oplus \wedge^{3}\left(t+t^{*}\right) \otimes \Omega^{0}(M)$. Write as $\omega=\omega_{3}+\omega_{2}+\omega_{1}+\omega_{0}$.

Local description of transitive Courant algebroids 2

A Maurer-Cartan element determines a Courant algebroid structure on $E=T M \oplus \mathcal{A}_{-1}=T M \oplus V \oplus T^{*} M$ through a derived bracket construction. Locally every transitive Courant algebroid has this form.
A global description just involves adding in some $O(V)$-transition functions.

For T-duality over n-dimensional fibres let V have signature (n, n). Can write $V=t \oplus t^{*}$ for some rank n vector space t.

The group $O(n, n)$ acts as automorphisms of \mathcal{A}. This action is closely related to T-duality.
$\omega \in \Omega^{3}(M) \oplus\left(t+t^{*}\right) \otimes \Omega^{2}(M) \oplus \wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M) \oplus \wedge^{3}\left(t+t^{*}\right) \otimes \Omega^{0}(M)$. Write as $\omega=\omega_{3}+\omega_{2}+\omega_{1}+\omega_{0}$.

We consider some special cases.

One leg on the fibre

$$
\begin{aligned}
\omega_{3}=H_{3} \in \Omega^{3}(M), \omega_{2}=(F, \hat{F}) \in \Omega^{2}(M) & \otimes\left(t+t^{*}\right), \omega_{1}=\omega_{0}=0 . \\
d F & =0, \\
d \hat{F} & =0, \\
d H_{3}+\langle F \wedge \hat{F}\rangle & =0 .
\end{aligned}
$$

One leg on the fibre

$$
\begin{aligned}
\omega_{3}=H_{3} \in \Omega^{3}(M), \omega_{2}=(F, \hat{F}) \in \Omega^{2}(M) & \otimes\left(t+t^{*}\right), \omega_{1}=\omega_{0}=0 . \\
d F & =0, \\
d \hat{F} & =0, \\
d H_{3}+\langle F \wedge \hat{F}\rangle & =0 .
\end{aligned}
$$

If $[F],[\hat{F}]$ are integral we can interpret them as Chern classes of T -dual bundles X, \hat{X}.

One leg on the fibre

$$
\begin{aligned}
\omega_{3}=H_{3} \in \Omega^{3}(M), \omega_{2}=(F, \hat{F}) \in \Omega^{2}(M) & \otimes\left(t+t^{*}\right), \omega_{1}=\omega_{0}=0 . \\
d F & =0, \\
d \hat{F} & =0, \\
d H_{3}+\langle F \wedge \hat{F}\rangle & =0 .
\end{aligned}
$$

If $[F],[\hat{F}]$ are integral we can interpret them as Chern classes of T -dual bundles X, \hat{X}.
If A, \hat{A} are connections on X, \hat{X} so that $d A=F, d \hat{A}=\hat{F}$ then

$$
\begin{aligned}
& H=H_{3}+A \wedge \hat{F}, \\
& \hat{H}=H_{3}+\hat{A} \wedge F,
\end{aligned}
$$

are the T -dual 3 -forms on X, \hat{X}.

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$.

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$. $\wedge^{2}\left(t+t^{*}\right)$ is the Lie algebra of $O(n, n)$. Think of ω_{1} as an $O(n, n)$-connection $\nabla=d+\omega_{1}$.

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$. $\wedge^{2}\left(t+t^{*}\right)$ is the Lie algebra of $O(n, n)$. Think of ω_{1} as an $O(n, n)$-connection $\nabla=d+\omega_{1}$.
The Maurer-Cartan equations become

$$
\begin{aligned}
F_{\nabla} & =0, \\
d_{\nabla}(F, \hat{F}) & =0, \\
d H_{3}+\langle F \wedge \hat{F}\rangle & =0 .
\end{aligned}
$$

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$.
$\wedge^{2}\left(t+t^{*}\right)$ is the Lie algebra of $O(n, n)$. Think of ω_{1} as an
$O(n, n)$-connection $\nabla=d+\omega_{1}$.
The Maurer-Cartan equations become

$$
\begin{array}{r}
F_{\nabla}=0 \\
d_{\nabla}(F, \hat{F})=0 \\
d H_{3}+\langle F \wedge \hat{F}\rangle=0
\end{array}
$$

∇ is a flat $O(n, n)$ connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$.
$\wedge^{2}\left(t+t^{*}\right)$ is the Lie algebra of $O(n, n)$. Think of ω_{1} as an
$O(n, n)$-connection $\nabla=d+\omega_{1}$.
The Maurer-Cartan equations become

$$
\begin{array}{r}
F_{\nabla}=0 \\
d_{\nabla}(F, \hat{F})=0 \\
d H_{3}+\langle F \wedge \hat{F}\rangle=0
\end{array}
$$

∇ is a flat $O(n, n)$ connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

Impose integrality: (F, \hat{F}) integral and $O(n, n, \mathbb{Z})$-holonomy. Interpret as a $T^{2 n}$-bundle $C \rightarrow M$.

Two legs on the fibre

$\omega_{0}=0$, but now $\omega_{1} \neq 0 . \omega_{1}$ is valued in $\wedge^{2}\left(t+t^{*}\right) \otimes \Omega^{1}(M)$.
$\wedge^{2}\left(t+t^{*}\right)$ is the Lie algebra of $O(n, n)$. Think of ω_{1} as an
$O(n, n)$-connection $\nabla=d+\omega_{1}$.
The Maurer-Cartan equations become

$$
\begin{aligned}
F_{\nabla} & =0 \\
d_{\nabla}(F, \hat{F}) & =0 \\
d H_{3}+\langle F \wedge \hat{F}\rangle & =0
\end{aligned}
$$

∇ is a flat $O(n, n)$ connection. The pair (F, \hat{F}) defines a cohomology class with local coefficients.

Impose integrality: (F, \hat{F}) integral and $O(n, n, \mathbb{Z})$-holonomy. Interpret as a $T^{2 n}$-bundle $C \rightarrow M$. If the monodromy reduces to
$G L(n, \mathbb{Z}) \subset O(n, n, \mathbb{Z})$ then we can write C as a fibre product $C=X \times_{M} \hat{X}$. Think of X, \hat{X} as T-duals.

T-duality with monodromy

Courant algebroid approach suggests a T-duality for torus bundles which have both monodromy and Chern classes.

To capture this introduce the group $\operatorname{Aff}\left(T^{n}\right)=G L(n, \mathbb{Z}) \ltimes T^{n}$ of affine transformations of T^{n}.

T-duality with monodromy

Courant algebroid approach suggests a T-duality for torus bundles which have both monodromy and Chern classes.

To capture this introduce the group $\operatorname{Aff}\left(T^{n}\right)=G L(n, \mathbb{Z}) \ltimes T^{n}$ of affine transformations of T^{n}.

Definition

An affine torus bundle is a torus bundle $X \rightarrow M$ with structure group $\operatorname{Aff}\left(T^{n}\right)$.

Affine torus bundles have a monodromy representation $\rho: \pi_{1}(M) \rightarrow G L(n, \mathbb{Z})$ and a twisted Chern class $c \in H^{2}\left(M, \Lambda_{\rho}\right)$, where $\Lambda=\mathbb{Z}^{n}$ and Λ_{ρ} is the corresponding local system.

The data (ρ, c) determines X and every such pair yields and affine torus bundle. For $n \leq 3$ every torus bundle is affine.

T-duality with monodromy 2

T-duality should dualise monodromy: $\hat{\rho}=\rho^{*}$

T-duality with monodromy 2

T-duality should dualise monodromy: $\hat{\rho}=\rho^{*}$
Twisted Chern classes and flux should be interchanged: recall there is a filtration on $H^{3}(X, \mathbb{Z})$ associated to Leray-Serre $S S\left\{E_{r}^{p, q}\right\}$

$$
F^{3,3} \subseteq F^{2,3} \subseteq F^{1,3} \subseteq F^{0,3}=H^{3}(X, \mathbb{Z}) .
$$

Say that $h \in H^{3}(X, \mathbb{Z})$ is \mathbf{T}-dualizable if $h \in F^{2,3}$ (h has "one leg on the fibre").

T-duality with monodromy 2

T-duality should dualise monodromy: $\hat{\rho}=\rho^{*}$
Twisted Chern classes and flux should be interchanged: recall there is a filtration on $H^{3}(X, \mathbb{Z})$ associated to Leray-Serre $S S\left\{E_{r}^{p, q}\right\}$

$$
F^{3,3} \subseteq F^{2,3} \subseteq F^{1,3} \subseteq F^{0,3}=H^{3}(X, \mathbb{Z}) .
$$

Say that $h \in H^{3}(X, \mathbb{Z})$ is T-dualizable if $h \in F^{2,3}$ (h has "one leg on the fibre").
$F^{2,3} / F^{3,3}=E_{\infty}^{2,3}$ is a subquotient of $E_{2}^{2,1}=H^{2}\left(M,\left(\Lambda_{\rho}\right)^{*}\right)=H^{2}\left(M, \Lambda_{\hat{\rho}}\right)$. This is where the dual twisted Chern class \hat{c} lives, so we demand that \hat{c} projects to image of h in $F^{2,3} / F^{3,3}$.

T-duality with monodromy 3

Definition

Let $\pi: X \rightarrow M, \hat{\pi}: \hat{X} \rightarrow M$ be affine torus bundles, monodromy $\rho, \hat{\rho}$, twisted Chern classes c, \hat{c}, T-dualizable fluxes $h \in H^{3}(X, \mathbb{Z})$, $\hat{h} \in H^{3}(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.

T-duality with monodromy 3

Definition

Let $\pi: X \rightarrow M, \hat{\pi}: \hat{X} \rightarrow M$ be affine torus bundles, monodromy $\rho, \hat{\rho}$, twisted Chern classes c, \hat{c}, T-dualizable fluxes $h \in H^{3}(X, \mathbb{Z})$, $\hat{h} \in H^{3}(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.
$(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if

- $\hat{\rho}=\rho^{*}$
- Image of \hat{c} in $E_{\infty}^{2,1}(\pi)=F^{2,3} / F^{3,3}$ equals $h \bmod F^{3,3}$
- Similarly for c and \hat{h}
- $\hat{\alpha}=\alpha+\operatorname{det}(\rho)$
- h and \hat{h} agree on $X \times_{M} \hat{X}$.

T-duality with monodromy 3

Definition

Let $\pi: X \rightarrow M, \hat{\pi}: \hat{X} \rightarrow M$ be affine torus bundles, monodromy $\rho, \hat{\rho}$, twisted Chern classes c, \hat{c}, T-dualizable fluxes $h \in H^{3}(X, \mathbb{Z})$, $\hat{h} \in H^{3}(\hat{X}, \mathbb{Z})$ and gerbe gradings $\alpha, \hat{\alpha} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.
$(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ are T-dual if

- $\hat{\rho}=\rho^{*}$
- Image of \hat{c} in $E_{\infty}^{2,1}(\pi)=F^{2,3} / F^{3,3}$ equals $h \bmod F^{3,3}$
- Similarly for c and \hat{h}
- $\hat{\alpha}=\alpha+\operatorname{det}(\rho)$
- h and \hat{h} agree on $X \times_{M} \hat{X}$.

Actually this last property is too weak: ((2.7) in Bunke, Rumpf, Schick).

T-duality with monodromy 4

ρ determines a flat vector bundle $V_{\rho}=\Lambda_{\rho} \otimes \mathbb{R}$. Set $w_{1}=w_{1}\left(V_{\rho}\right)$, $W_{3}=W_{3}\left(V_{\rho}\right)$.
Say (X, α, h) is T-dualizable in twisted K-theory if $(\beta=$ Bockstein $)$

$$
W_{3}+\beta\left(\alpha W_{1}\right)=0
$$

This condition is T-duality invariant.

T-duality with monodromy 4

ρ determines a flat vector bundle $V_{\rho}=\Lambda_{\rho} \otimes \mathbb{R}$. Set $w_{1}=w_{1}\left(V_{\rho}\right)$, $W_{3}=W_{3}\left(V_{\rho}\right)$.

Say (X, α, h) is T-dualizable in twisted K-theory if $(\beta=$ Bockstein $)$

$$
W_{3}+\beta\left(\alpha W_{1}\right)=0
$$

This condition is T-duality invariant.

Theorem

If $(X, \alpha, h),(\hat{X}, \hat{\alpha}, \hat{h})$ be are T-duals of rank n, T-dualizable in twisted K-theory then we have isomorphisms

$$
\begin{aligned}
& K^{*}(X,(\alpha, h)) \simeq K^{*-n}(\hat{X},(\hat{\alpha}, \hat{h})) \\
& H^{*}(X,(\alpha, h)) \simeq H^{*-n}(\hat{X},(\hat{\alpha}, \hat{h}))
\end{aligned}
$$

Example

$M=T^{2}, \pi_{1}(M)=\mathbb{Z}^{2}$ generated by x, y say.
Monodromy $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}(2, \mathbb{Z})$ as follows:

$$
\rho(x)=\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right], \quad \rho(y)=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.

Example

$M=T^{2}, \pi_{1}(M)=\mathbb{Z}^{2}$ generated by x, y say.
Monodromy $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}(2, \mathbb{Z})$ as follows:

$$
\rho(x)=\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right], \quad \rho(y)=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.
Λ_{ρ} the corresponding \mathbb{Z}^{2}-valued local system.
$H^{2}\left(M, \Lambda_{\rho}\right)=\mathbb{Z}$. Affine T^{2}-bundles on M with monodromy ρ are classified by an integer $j \in \mathbb{Z}$. Let $E_{j} \rightarrow M$ be the corresponding torus bundle.

Example

$M=T^{2}, \pi_{1}(M)=\mathbb{Z}^{2}$ generated by x, y say.
Monodromy $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}(2, \mathbb{Z})$ as follows:

$$
\rho(x)=\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right], \quad \rho(y)=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right]
$$

where $m, n \in \mathbb{Z}$ are positive integers with no common factor. Note that ρ is self-dual.
Λ_{ρ} the corresponding \mathbb{Z}^{2}-valued local system.
$H^{2}\left(M, \Lambda_{\rho}\right)=\mathbb{Z}$. Affine T^{2}-bundles on M with monodromy ρ are classified by an integer $j \in \mathbb{Z}$. Let $E_{j} \rightarrow M$ be the corresponding torus bundle.
Let $F^{2,3}\left(E_{j}\right) \subseteq H^{3}\left(E_{j}, \mathbb{Z}\right)$ be the subgroup of T-dualisable flux. We find

$$
F^{2,3}\left(E_{j}\right)=\left\{\begin{array}{l}
\mathbb{Z}, j=0 \\
\mathbb{Z}_{j}, j \neq 0
\end{array}\right.
$$

Example 2

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_{k} \in H^{3}\left(E_{j}, \mathbb{Z}\right)$. By construction $h_{k+j}=h_{k}$.

Example 2

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_{k} \in H^{3}\left(E_{j}, \mathbb{Z}\right)$. By construction $h_{k+j}=h_{k}$.

The pair $\left(E_{j}, h_{k}\right)$ is classified by the pair of integers (j, k).
The relation $h_{k+j}=h_{k}$ induces an equivalence relation $(j, k) \sim(j, k+j)$ (is actually a kind of B-shift).

Example 2

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_{k} \in H^{3}\left(E_{j}, \mathbb{Z}\right)$. By construction $h_{k+j}=h_{k}$.

The pair $\left(E_{j}, h_{k}\right)$ is classified by the pair of integers (j, k).
The relation $h_{k+j}=h_{k}$ induces an equivalence relation $(j, k) \sim(j, k+j)$ (is actually a kind of B-shift).
T-duality corresponds to the interchange $(j, k) \mapsto(k, j)$.

Example 2

An integer $k \in \mathbb{Z}$ thus determines a T-dualisable flux $h_{k} \in H^{3}\left(E_{j}, \mathbb{Z}\right)$. By construction $h_{k+j}=h_{k}$.
The pair $\left(E_{j}, h_{k}\right)$ is classified by the pair of integers (j, k).
The relation $h_{k+j}=h_{k}$ induces an equivalence relation $(j, k) \sim(j, k+j)$ (is actually a kind of B-shift).
T-duality corresponds to the interchange $(j, k) \mapsto(k, j)$.
Let $K^{i}(j, k)=K^{i}\left(E_{j}, h_{k}\right)$. So

$$
\begin{aligned}
& K^{i}(j, k)=K^{i}(j, k+j), \\
& K^{i}(j, k)=K^{i-2}(k, j)=K^{i}(k, j)
\end{aligned}
$$

by B-shifts and T-duality.

Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted K-theory groups. An extension problem prevents calculation of the other groups.

Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted K-theory groups. An extension problem prevents calculation of the other groups.

i	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$
	$j=0, k=0$	$j=0, k \neq 0$	$j \neq 0, j \mid k$	$j \neq 0, j \nmid k$
0	\mathbb{Z}^{4}	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{k}$	$*$	$*$
1	\mathbb{Z}^{6}	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{j}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$

Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted K-theory groups. An extension problem prevents calculation of the other groups.

i	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$
	$j=0, k=0$	$j=0, k \neq 0$	$j \neq 0, j \mid k$	$j \neq 0, j \nmid k$
0	\mathbb{Z}^{4}	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$	$*$
1	\mathbb{Z}^{6}	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{j}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$

By T-duality $K^{0}(j, 0)=K^{0}(0, j)=\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$.

Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted K-theory groups. An extension problem prevents calculation of the other groups.

i	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$
	$j=0, k=0$	$j=0, k \neq 0$	$j \neq 0, j \mid k$	$j \neq 0, j \nmid k$
0	\mathbb{Z}^{4}	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$	$*$
1	\mathbb{Z}^{6}	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{j}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$

By T-duality $K^{0}(j, 0)=K^{0}(0, j)=\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$.
For $K^{0}(j, k)$ we make repeated use of $(j, k) \sim(j, k+j)$ and $(j, k) \sim(k, j)$.

Example 3

Using Leray-Serre and Atiyah-Hirzebruch we can calculate some twisted K-theory groups. An extension problem prevents calculation of the other groups.

i	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$	$K^{i}(j, k)$
	$j=0, k=0$	$j=0, k \neq 0$	$j \neq 0, j \mid k$	$j \neq 0, j \nmid k$
0	\mathbb{Z}^{4}	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$	$\mathbb{Z}^{2} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$
1	\mathbb{Z}^{6}	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{k}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{j}$	$\mathbb{Z}^{4} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$

By T-duality $K^{0}(j, 0)=K^{0}(0, j)=\mathbb{Z}^{2} \oplus \mathbb{Z}_{j}$.
For $K^{0}(j, k)$ we make repeated use of $(j, k) \sim(j, k+j)$ and $(j, k) \sim(k, j)$. Use Euclidean algorithm to get $K^{0}(j, k) \simeq K^{0}(\operatorname{gcd}(j, k), 0)=\mathbb{Z}^{2} \oplus \mathbb{Z}_{\operatorname{gcd}(j, k)}$.

Conformal Courant algebroids

Recall that $T X \oplus T^{*} X$ with untwisted Dorfman bracket has symmetries by closed 2 -forms.

There is actually a second kind of symmetry

$$
X+\xi \mapsto X+c \xi
$$

where c is a non-zero constant.

Conformal Courant algebroids

Recall that $T X \oplus T^{*} X$ with untwisted Dorfman bracket has symmetries by closed 2 -forms.

There is actually a second kind of symmetry

$$
X+\xi \mapsto X+c \xi
$$

where c is a non-zero constant.
This action of \mathbb{R}^{\times}preserves the Dorfman bracket but only preserves the pairing \langle,$\rangle up to scale.$

Suggests a modification of Courant algebroid axioms that replaces \langle, by a conformal structure.

Definition

Definition

A conformal Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A line bundle L with E-connection ∇,
- A bundle map $\rho: E \rightarrow T X$ called the anchor,
- A non-degenerate symmetric bilinear form $\langle\rangle:, E \otimes E \rightarrow L$,
- An \mathbb{R}-bilinear operation [,]: $\Gamma(E) \otimes_{\mathbb{R}} \Gamma(E) \rightarrow \Gamma(E)$ on sections of E, the Dorfman bracket,
such that

Definition

Definition

A conformal Courant algebroid on a smooth manifold X consists of

- A vector bundle E,
- A line bundle L with E-connection ∇,
- A bundle map $\rho: E \rightarrow T X$ called the anchor,
- A non-degenerate symmetric bilinear form $\langle\rangle:, E \otimes E \rightarrow L$,
- An \mathbb{R}-bilinear operation [,]: $\Gamma(E) \otimes_{\mathbb{R}} \Gamma(E) \rightarrow \Gamma(E)$ on sections of E, the Dorfman bracket, such that for all $a, b, c \in \Gamma(E), f \in \Gamma(L)$
CA1 $[a,[b, c]]=[[a, b], c]+[b,[a, c]]$,
CA2 $\rho[a, b]=[\rho(a), \rho(b)]$,
САЗ $[a, f b]=\rho(a)(f) b+f[a, b]$,
CA4 $[a, b]+[b, a]=\nabla\langle a, b\rangle$,
CA5 $\nabla_{a}\langle b, c\rangle=\langle[a, b], c\rangle+\langle a,[b, c]\rangle$

Exact conformal Courant algebroids

Definition

A conformal Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \otimes L \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Exact conformal Courant algebroids

Definition

A conformal Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \otimes L \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Theorem

Isomorphism classes of exact Courant algebroids on X correspond to pairs (ϵ, H) with $\epsilon \in H^{1}\left(X, \mathbb{R}^{\times}\right)$representing a flat real line bundle L and $H \in H^{3}(X, L)$, modulo the equivalence $(\epsilon, H) \sim(\epsilon, c H)$ for $c \in \mathbb{R}^{\times}$. Given (L, ∇) and d_{∇}-closed 3 -form H a representative Courant algebroid for $(L, \nabla),[H]$ is given by

- $E=T X \oplus\left(L \otimes T^{*} X\right)$ with obvious anchor and symmetric bilinear pairing
- $[X+\xi, Y+\eta]_{L, H}=[X, Y]+\mathcal{L}_{X}^{\nabla} \eta-i_{Y} d_{\nabla} \xi+i_{X} i_{Y} H$

Exact conformal Courant algebroids

Definition

A conformal Courant algebroid E is exact if the sequence $0 \rightarrow T^{*} X \otimes L \xrightarrow{\rho^{*}} E \xrightarrow{\rho} T X \rightarrow 0$ is exact.

Theorem

Isomorphism classes of exact Courant algebroids on X correspond to pairs (ϵ, H) with $\epsilon \in H^{1}\left(X, \mathbb{R}^{\times}\right)$representing a flat real line bundle L and $H \in H^{3}(X, L)$, modulo the equivalence $(\epsilon, H) \sim(\epsilon, c H)$ for $c \in \mathbb{R}^{\times}$. Given (L, ∇) and d_{∇}-closed 3 -form H a representative Courant algebroid for $(L, \nabla),[H]$ is given by

- $E=T X \oplus\left(L \otimes T^{*} X\right)$ with obvious anchor and symmetric bilinear pairing
- $[X+\xi, Y+\eta]_{L, H}=[X, Y]+\mathcal{L}_{X}^{\nabla} \eta-i_{Y} d_{\nabla} \xi+i_{X} i_{Y} H$

Call $[,]_{L, H}$ the (L, H)-twisted Dorfman bracket on $E=T X \oplus T^{*} X \otimes L$.

ϵ-twisted graded gerbes

From now on take $\epsilon \in H^{1}\left(X, \mathbb{Z}_{2}\right) \subseteq H^{1}\left(X, \mathbb{R}^{\times}\right)$, so L is a flat orthogonal line bundle. Let $\epsilon_{i j}$ be a Čech cocycle representing ϵ.

ϵ-twisted graded gerbes

From now on take $\epsilon \in H^{1}\left(X, \mathbb{Z}_{2}\right) \subseteq H^{1}\left(X, \mathbb{R}^{\times}\right)$, so L is a flat orthogonal line bundle. Let $\epsilon_{i j}$ be a Čech cocycle representing ϵ.

Definition

An ϵ-twisted graded gerbe $\mathcal{G}=\left(L_{i j}, \alpha_{i j}, \theta_{i j k}\right)$ consists of

- a \mathbb{Z}_{2}-graded $U(1)$-line bundle $L_{i j}$ on each $U_{i j}$
- an isomorphism $\theta_{i j k}: L_{i j}^{\epsilon_{j k}} \otimes L_{j k} \rightarrow L_{i k}$ on each $U_{i j k}$
such that the $\theta_{i j k}$ preserve grading and satisfies an associativity condition.

Where $L^{1}=L, L^{-1}=L^{*}$.

ϵ-twisted graded gerbes

From now on take $\epsilon \in H^{1}\left(X, \mathbb{Z}_{2}\right) \subseteq H^{1}\left(X, \mathbb{R}^{\times}\right)$, so L is a flat orthogonal line bundle. Let $\epsilon_{i j}$ be a Čech cocycle representing ϵ.

Definition

An ϵ-twisted graded gerbe $\mathcal{G}=\left(L_{i j}, \alpha_{i j}, \theta_{i j k}\right)$ consists of

- a \mathbb{Z}_{2}-graded $U(1)$-line bundle $L_{i j}$ on each $U_{i j}$
- an isomorphism $\theta_{i j k}: L_{i j}^{\epsilon_{j k}} \otimes L_{j k} \rightarrow L_{i k}$ on each $U_{i j k}$
such that the $\theta_{i j k}$ preserve grading and satisfies an associativity condition.

Where $L^{1}=L, L^{-1}=L^{*}$.
Graded gerbes up to stable isomorphism are classified by $H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}\left(X, \mathbb{Z}_{\epsilon}\right)$ where \mathbb{Z}_{ϵ} is the \mathbb{Z}-valued local system obtained from ϵ.

ϵ-twisted Gerbe connections

Definition

A connection on \mathcal{G} is a choice of unitary connection $\nabla_{i j}$ for each $L_{i j}$ such that the $\theta_{i j k}$ are constant.

Let $F_{i j}$ be the curvature of $\nabla_{i j}$. The $F_{i j}$ are closed 2 -forms and

$$
\epsilon_{j k} F_{i j}+F_{j k}+F_{i k}=0
$$

Twisted generalised tangent bundle revisited

As before obtain a bundle E which over U_{i} looks like $T X \oplus T^{*} X \mid U_{i}$. This time introduce transitions $(-1)^{\epsilon_{j i}} e^{F_{i j}} \in \mathbb{Z}_{2} \ltimes \Omega_{\mathrm{cl}}^{2}(X)$.

Twisted generalised tangent bundle revisited

As before obtain a bundle E which over U_{i} looks like $T X \oplus T^{*} X \mid U_{i}$.
This time introduce transitions $(-1)^{\epsilon_{j i}} e^{F_{i j}} \in \mathbb{Z}_{2} \ltimes \Omega_{\mathrm{cl}}^{2}(X)$.
The transitions preserve the conformal Courant algebroid structure on $T X \oplus T^{*} X$, so E becomes and exact conformal Courant algebroid.

Twisted generalised tangent bundle revisited

As before obtain a bundle E which over U_{i} looks like $T X \oplus T^{*} X \mid U_{i}$.
This time introduce transitions $(-1)^{\epsilon_{j j}} e^{F_{i j}} \in \mathbb{Z}_{2} \ltimes \Omega_{\mathrm{cl}}^{2}(X)$.
The transitions preserve the conformal Courant algebroid structure on $T X \oplus T^{*} X$, so E becomes and exact conformal Courant algebroid. This time instead of a spin structure we consider a $\mathbb{Z}_{2} \ltimes \operatorname{Spin}(n, n)$ structure. We get a kind of \mathbb{Z}_{4}-graded spinor bundle S^{t} which over U_{i} looks like

$$
S^{t} \mid U_{i}=\bigoplus_{k \in \mathbb{Z}} L^{k} \otimes \bigwedge^{t+2 k} T^{*} X
$$

but globally gets twisted. Still get a differential $D: \Gamma\left(S^{t}\right) \rightarrow \Gamma\left(S^{t+1}\right)$.

Splitting the structure

Definition

A curving for an ϵ-twisted gerbe with connection $\left(\mathcal{G}, \nabla_{i j}\right)$ is a collection of 2-forms B_{i} such that $B_{j}-\epsilon_{i j} B_{i}=F_{i j}$. The locally defined 3 -forms $H_{i}=d B_{i}$ satisfy $H_{i}=\epsilon_{i j} H_{j}$, so define a d_{∇}-closed 3-form $H \in \Omega^{3}(X, L)$ called the curvature. $[H] \in H^{3}(X, L)$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

Splitting the structure

Definition

A curving for an ϵ-twisted gerbe with connection $\left(\mathcal{G}, \nabla_{i j}\right)$ is a collection of 2-forms B_{i} such that $B_{j}-\epsilon_{i j} B_{i}=F_{i j}$. The locally defined 3 -forms $H_{i}=d B_{i}$ satisfy $H_{i}=\epsilon_{i j} H_{j}$, so define a d_{∇}-closed 3-form $H \in \Omega^{3}(X, L)$ called the curvature. $[H] \in H^{3}(X, L)$ is the image of the Dixmier-Douady class of \mathcal{G} in real cohomology.

As before curving yields an isomorphism $\phi: E \simeq T X \oplus\left(L \otimes T^{*} X\right)$.
Under ϕ the Courant bracket on E maps to the (L, H)-twisted Courant bracket on $T X \oplus\left(L \otimes T^{*} X\right)$.

Splitting the structure 2

Similarly a curving yields an isomorphism of the spin bundle S :

$$
S^{i} \simeq \bigoplus_{k \in \mathbb{Z}} A \otimes L^{k} \otimes \bigwedge^{i+2 k} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle A corresponding to the grading class $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$.

Splitting the structure 2

Similarly a curving yields an isomorphism of the spin bundle S :

$$
S^{i} \simeq \bigoplus_{k \in \mathbb{Z}} A \otimes L^{k} \otimes \bigwedge^{i+2 k} T^{*} X
$$

where A is the \mathbb{Z}_{2}-line bundle A corresponding to the grading class $[\alpha] \in H^{1}\left(X, \mathbb{Z}_{2}\right)$.

The operator D becomes the twisted differential $d_{\nabla, H}: \Gamma\left(S^{i}\right) \rightarrow \Gamma\left(S^{i+1}\right)$ given by:

$$
d_{\nabla, H} \omega=d_{\nabla \omega}+H \wedge \omega
$$

where ∇ denotes the flat connection on the various $A \otimes L^{k}$.

Twisted cohomology

Let $H_{\epsilon}^{*}(X,(\alpha, H))$ denote the $\left(\mathbb{Z}_{4}\right.$-graded) cohomology groups.
We conjecture that $H_{\epsilon}^{*}(X,(\alpha, H))$ is the target for a Chern character in twisted KR-theory.

T-duality

Let $\pi: X \rightarrow M$ be a torus bundle, $\epsilon \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ and \mathcal{G} an ϵ-twisted graded gerbe on X with class $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}\left(X, \mathbb{Z}_{\epsilon}\right)$.

T-duality

Let $\pi: X \rightarrow M$ be a torus bundle, $\epsilon \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ and \mathcal{G} an ϵ-twisted graded gerbe on X with class $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}\left(X, \mathbb{Z}_{\epsilon}\right)$.

As before invariant sections yield a conformal Courant algebroid $E_{\text {red }}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

T-duality

Let $\pi: X \rightarrow M$ be a torus bundle, $\epsilon \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ and \mathcal{G} an ϵ-twisted graded gerbe on X with class $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}\left(X, \mathbb{Z}_{\epsilon}\right)$.
As before invariant sections yield a conformal Courant algebroid $E_{\text {red }}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

Choosing a connection on X we have that

$$
E_{\mathrm{red}}(X, \mathcal{G})=T M \oplus V \oplus\left(L \otimes V^{*}\right) \oplus\left(L \otimes T^{*} M\right)
$$

where V is the vertical bundle (the flat $G L(n, \mathbb{Z})$ vector bundle associated to the monodromy).

T-duality

Let $\pi: X \rightarrow M$ be a torus bundle, $\epsilon \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ and \mathcal{G} an ϵ-twisted graded gerbe on X with class $(\alpha, h) \in H^{1}\left(X, \mathbb{Z}_{2}\right) \times H^{3}\left(X, \mathbb{Z}_{\epsilon}\right)$.

As before invariant sections yield a conformal Courant algebroid $E_{\text {red }}(X, \mathcal{G})$ over M. To formulate T-duality we demand an isomorphism between these algebroids.

Choosing a connection on X we have that

$$
E_{\mathrm{red}}(X, \mathcal{G})=T M \oplus V \oplus\left(L \otimes V^{*}\right) \oplus\left(L \otimes T^{*} M\right)
$$

where V is the vertical bundle (the flat $G L(n, \mathbb{Z})$ vector bundle associated to the monodromy).

Roughly speaking T-duality should interchange the inner two factors. This leads to a definition of T-duality for torus bundles with ϵ-twisted graded gerbes.

Example

Skip to an example.

Example

Skip to an example.
Let $M=S^{1}, \epsilon=\hat{\epsilon}$ the non-trivial class in $H^{1}\left(S^{1}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. Take $X=T^{2}$ and trivial twisted graded gerbe.

Example

Skip to an example.
Let $M=S^{1}, \epsilon=\hat{\epsilon}$ the non-trivial class in $H^{1}\left(S^{1}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. Take $X=T^{2}$ and trivial twisted graded gerbe.

Then one finds that $\hat{X}=K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.

Example

Skip to an example.
Let $M=S^{1}, \epsilon=\hat{\epsilon}$ the non-trivial class in $H^{1}\left(S^{1}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. Take $X=T^{2}$ and trivial twisted graded gerbe.

Then one finds that $\hat{X}=K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.
We proved there is an isomorphism in twisted cohomologies

$$
H_{\epsilon}^{i}\left(T^{2},(0,0)\right)=H_{\epsilon}^{i-1}(K,(0,0))
$$

Example

Skip to an example.
Let $M=S^{1}, \epsilon=\hat{\epsilon}$ the non-trivial class in $H^{1}\left(S^{1}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. Take $X=T^{2}$ and trivial twisted graded gerbe.

Then one finds that $\hat{X}=K$ the Klein bottle similarly equipped with the trivial twisted graded gerbe.
We proved there is an isomorphism in twisted cohomologies

$$
H_{\epsilon}^{i}\left(T^{2},(0,0)\right)=H_{\epsilon}^{i-1}(K,(0,0))
$$

We conjecture this extends to twisted $K R$-theory. The missing ingredients are Mayer-Vietoris and a push-forward in twisted $K R$-theory. In this case we should have an isomorphism

$$
K R^{i}\left(T_{\epsilon}^{2}\right)=K R^{i-1}\left(K_{\epsilon}\right)
$$

Example 2

Using a spectral sequence computation we get:

i	$K R^{i}\left(T_{\epsilon}^{2}\right)$	$K R^{i}\left(K_{\epsilon}\right)$
0	$\mathbb{Z} \oplus \mathbb{Z}_{2}$	\mathbb{Z}^{2}
1	\mathbb{Z}^{2}	\mathbb{Z}
2	\mathbb{Z}	\mathbb{Z}_{2}
3	\mathbb{Z}_{2}	$\mathbb{Z} \oplus \mathbb{Z}_{2}$

Note: generally $K R$ is 8 -periodic, but in this example 4-periodic. We see that $K R^{i}\left(T_{\epsilon}^{2}\right)=K R^{i-1}\left(K_{\epsilon}\right)$ is satisfied.

