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Representation ring (Notation)

The representation ring R(G ) ⊂ C∞(G ) is the subring generated
by characters χV of finite-dimensional G -representations V . It has
basis the irreducible characters.

G compact, connected,

T ⊂ G maximal torus, t = Lie(T ),

t∗+ ⊂ t∗ positive Weyl chamber,

P ⊂ t∗ (real) weight lattice,

P+ = P ∩ t∗+ dominant weights ⇒ R(G ) = Z[P+].

0
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Quantization of Hamiltonian G -spaces

Recall axioms of Hamiltonian G -spaces, Φ: M → g∗:

1 ι(ξM)ω = −〈dΦ, ξ〉,
2 dω = 0,

3 ker(ω) = 0.

Definition of quantization

Symplectic form determines a Spinc -structure.

Suppose (M, ω,Φ) pre-quantizable, pick pre-quantum line
bundle L→ M.

Let /∂L Spinc -Dirac operator with coefficients in L. Define

Q(M) = indexG (/∂L) ∈ R(G ).
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Quantization of Hamiltonian G -spaces

Q(M) ∈ R(G ) is independent of the choices made.

Basic Properties:

Q(M1 ∪M2) = Q(M1) +Q(M2),

Q(M1 ×M2) = Q(M1)Q(M2),

Q(M∗) = Q(M)∗,

The coadjoint orbit G .µ, µ ∈ t∗+ is pre-quantized if and only if
µ ∈ P+. In this case,

Q(G .µ) = χµ.
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Quantization of Hamiltonian G -spaces

Let R(G )→ Z, χ 7→ χG be the map defined by χG
µ = δµ,0.

Theorem (Quantization commutes with reduction)

Suppose M is a compact pre-quantized Hamiltonian G -space.
Then

Q(M)G = Q(M//G ).

This was conjectured (and
proved in many cases) by

Guillemin-Sternberg.

One may take care of the singularities of M//G by partial

desingularization (M-Sjamaar).
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Quantization of Hamiltonian G -spaces

More generally, let N(µ), µ ∈ P+ be the multiplicities given as

Q(M) =
∑
µ∈P+

N(µ)χµ.

Corollary

For all µ ∈ P+,
N(µ) = Q(M//µG )

where
M//µG = Φ−1(O)/G = (M ×O−)//G .

Consequences

Let ∆(M) ⊂ t∗+ be the moment polytope. Then N(µ) = 0
unless µ ∈ P+ ∩∆(M).

If M is multiplicity-free (e.g. a symplectic toric space) then
N(µ) ∈ {0, 1} for all µ ∈ P+.
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Quantization of Hamiltonian G -spaces

Q(M) = indexG (/∂) may also be computed by localization:

Theorem (Atiyah-Segal-Singer)

Q(M)(g) =
∑

F⊂Mg

∫
F

Td(F ) Ch(L|F , g)

DC(νF , g)

a sum over fixed point manifolds F ⊂ Mg .
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Quantization of Hamiltonian G -spaces

One can also write the fixed point formula in ‘Spinc -form’. This
will be more convenient for our discussion.

Theorem (Atiyah-Segal-Singer)

Q(M)(g) =
∑

F⊂Mg

∫
F

Â(F ) Ch(L|F , g)1/2

DR(νF , g)

a sum over fixed point manifolds F ⊂ Mg .

Here L is the ‘Spinc -line bundle’ L = L2 ⊗ K−1, and νF is the
normal bundle to F .
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Quantization of Hamiltonian G -spaces

Here the various characteristic forms are, in terms of curvature
forms:

Â(F ) = det
−1/2
R (j( 1

2πRTF )), j(z) = sinh(z/2)
z/2

Ch(L|F , t) = trC
(
µ(t) exp( 1

2πRL)
)

DR(νF , t) = i
1
2 rk(νF )det

1/2
R

(
1− AF (t)−1 exp( 1

2πRF )
)

.

Here µ(t) ∈ U(1) is the action of t on LF , and
AF (t) ∈ Γ(F ,O(νF )) is the action of t on νF .
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Quantization of q-Hamiltonian G -spaces ?

Recall axioms of q-Hamiltonian G -spaces, Φ: M → G :

1 ι(ξM)ω = −1
2 Φ∗(θL + θR) · ξ,

2 dω = −Φ∗η,

3 ker(ω) ∩ ker(dΦ) = 0.

Questions / Problems

Where should Q(M) take values in ??

ω is not closed, hence ‘pre-quantum line bundle’ does not
make sense.

ω could be degenerate, so ‘compatible almost complex
structure’ does not make sense. However, we constructed a

‘twisted Spinc -structure’.
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Pre-quantization of q-Hamiltonian spaces

To simplify the discussion, assume G compact, 1-connected and
simple.

Then H1(G ,Z) = H2(G ,Z) = 0, H3(G ,Z) = Z.

Take · to be the basic inner product on g. Then

η =
1

12
θL · [θL, θL] ∈ Ω3(G )

represents a generator of H3(G ,Z) ⊂ H3(G ,R).
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Pre-quantization of q-Hamiltonian spaces

The condition dω = −Φ∗η means that (ω, η) defines a cocycle for
the relative cohomology H3(Φ,R).

Reminder: Relative cohomology

Let C •(X ) denote singular cochains on X . Given Φ: X → Y define

C •(Φ) = C •−1(X )⊕ C •(Y ), d(x , y) = (Φ∗(y) + dx ,−dy).

Its cohomology is H•(Φ). Exact sequence:

· · · → H•(Φ)→ H•(Y )
Φ∗−−→ H•(X )→ H•+1(Φ)→ · · ·

Similar for Čech cohomology, de Rham cohomology, etc.
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Pre-quantization

Assume G compact, 1-connected, simple.

Definition

A level k pre-quantization of a q-Hamiltonian G -space (M, ω,Φ) is
a lift of k[(ω, η)] ∈ H3(Φ,R) to H3(Φ,Z).

This is similar to a definition of pre-quantization of a Hamiltonian
G -space, as an integral lift of [ω] ∈ H2(M,R).

Remark

There is an equivariant version of the definition. But since we
assume π1(G ) = 0 the equivariance is automatic.
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Pre-quantization

Properties of pre-quantization

Any two pre-quantizations differ by a flat line bundle.

(M, ω,Φ) is pre-quantizable at level k if and only if for all
Σ ∈ Z2(M), and any X ∈ C3(G ) with Φ(Σ) = ∂X ,

k(

∫
Σ
ω −

∫
X
η) ∈ Z.

A pre-quantization of two q-Hamiltonian G -spaces induces a
pre-quantization of their fusion product.

The exponential of a pre-quantized Hamiltonian space inherits
a pre-quantization,.

If (M, ω,Φ) is a pre-quantized q-Hamiltonian space, and e is
a regular value then M//G is pre-quantized.
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Pre-quantization: Examples

Example

The double D(G ) = G × G , Φ(a, b) = aba−1b−1 is
pre-quantizable for all k ∈ N, since H2(D(G )) = 0.

Example

The q-Hamiltonian SU(n)-space M = S2n is pre-quantized for all
k ∈ N, since H2(M) = 0.
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Pre-quantization: Examples

Recall that P ⊂ t∗ ∼= t is the weight lattice, and A ⊂ t+ the alcove.

Definition

The elements Pk = P ∩ kA are called level k weights.

Example

A conjugacy class C = G . exp(ξ), ξ ∈ A admits a level k
prequantization if and only if

kξ ∈ Pk .

G = SU(3)
k = 3
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Pre-quantization: Examples

Here is a more complicated example:

Example (D. Krepski)

Let Z = Z (G ), and G ′ = G/Z . Then

D(G ′) = D(G )/Z × Z

is a q-Hamiltonian G -space.

Let P∨ be the co-weight lattice (dual
of the root lattice). Then D(G ′) is pre-quantizable at level k if and
only if for all ξ1, ξ2 ∈ P∨,

kξ1 · ξ2 ∈ Z.

The various pre-quantizations are indexed by Z × Z .

N.B.: D(G ′)h//G is the moduli space of flat connections on
Σ0
h × G ′.
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Pre-quantization in terms of DD bundles

Reminder: Dixmier-Douady theory

A DD bundle A → X is a Z2-graded bundle of C ∗-algebras,
with typical fiber K(H) (compact operators).

A Morita morphism (Φ, E) : A1 99K A2 is a map Φ: X1 → X2

with a Z2-graded bundle of bimodules

Φ∗A2 � E 	 A1,

modeled on K(H2) � K(H1,H2) 	 K(H1).

Up to Morita isomorphism, DD bundles over X are classified
by H3(X ,Z)× H1(X ,Z2).
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Pre-quantization in terms of DD bundles

Relative DD bundles

In a similar way, H3(Φ,Z)× H1(Φ,Z2) for Φ: X → Y classifies
DD bundles A → Y together with Morita trivializations of the
pull-back to X ,

(Φ, E) : X × C 99K A.
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Pre-quantization in terms of DD bundles

For G compact, 1-connected, simple, let A(l) → G be trivially
graded, with DD class l ∈ Z ∼= H3(G ,Z).

Definition

A level k pre-quantization of (M, ω,Φ) is a Morita morphism

(Φ, E) : M × C 99K A(k)

such that DD(E ,A) ∈ H3(Φ,Z) lifts the class [(ω, η)]. (Trivial
Z2-gradings.)
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Twisting the twisted Spinc-structure

For Hamiltonian G -spaces, we used the pre-quantum line bundle L
to twist the canonical Spinc -structure (p, Sop) : C l(TM) 99K C:

(p, L⊗ Sop) : C l(TM) 99K C.

We then defined Q(M) = indexG (/∂L).
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Twisting the twisted Spinc-structure

Similarly, for a level k pre-quantized q-Hamiltonian G -space we use
the pre-quantization to twist the canonical ‘twisted
Spinc -structure’ (Φ,Sop) : C l(TM) 99K A(h∨):

(Φ, E ⊗ Sop) : C l(TM) 99K A(k+h∨).

We’ll define Q(M) as a push-forward in twisted K -homology.
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Twisted K -homology

If A → X is a G -equivariant DD bundle, the space

Γ0(X ,A)

of sections vanishing at infinity is a G -C ∗-algebra.

Definition (Donovan-Karoubi, Rosenberg)

The twisted equivariant K -homology of X with coefficients in A is

KG
• (X ,A) := K •G (Γ0(X ,A)).

Here we are using Kasparov’s definition of the K -homology of
C ∗-algebras:
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Kasparov’s definition of K -homology (Sketch)

Let A be a Z2-graded C ∗ algebra.

Definition (Atiyah, Kasparov)

A Fredholm module over A is a Z2-graded Hilbert space H with a
∗-representation π : A→ B(H), together with an odd element
F ∈ B(H), s.t. ∀a ∈ A

1 [π(a),F ] ∈ K(H),

2 (F 2 + I )π(a) ∈ K(H).

Definition (Kasparov)

K 0(A) = Fredholm modules over A, mod ‘homotopy’.
K 1(A) = K 0(A⊗ C l(R)).

We use this definition for A = Γ0(X ,A).
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Twisted K -homology

Some remarks on KG
• (X ,A) = K •G (Γ0(X ,A)):

Twisted K -homology is covariant relative to Morita
morphisms (Φ, E) : A1 99K A2 such that Φ is proper.

If A = C write KG
• (X ).

KG
0 (pt) = R(G ), with ring structure induced by push-forward

under pt× pt→ pt.

KG
• (X ,A) is a module over KG

0 (pt) = R(G ).
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Example: elliptic operators

Example

Suppose D is an equivariant skew-adjoint odd elliptic differential
operator acting on V = V + ⊕ V− → M (compact manifold).

H = ΓL2(X ,V ), F =
D√

1 + D∗D

defines a K -homology class

[D] ∈ KG
0 (M).

The index is a push-forward under p : M → pt:

p∗[D] = indexG (D).

Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps



Example: K -homology fundamental class

Example

Let M be a compact Riemannian G -manifold of even dimension.
Then there is a fundamental class

[M] ∈ KG
0 (M,C l(TM)),

represented by the de Rham Dirac operator on
Γ(M,∧T ∗M) ∼= Γ(M,C l(TM)).

Thus C l(TM) plays the role of
an ‘orientation bundle’ in K -theory.
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Example: Freed-Hopkins-Teleman

Let G be compact, 1-connected, simple; A(l) → G a G -DD bundle
at level l ∈ Z ∼= H3(G ,Z).

KG
0 (G ,A(l)) has a ring structure defined by (MultG )∗.

Theorem (Freed-Hopkins-Teleman)

For all k ∈ Z≥0, there is a canonical isomorphism of rings

KG
0 (G ,A(k+h∨)) ∼= Rk(G )

where Rk(G ) is the level k fusion ring (Verlinde ring).

Additively, Rk(G ) = Z[Pk ]. We’ll come back to the ring structure
later.
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Definition of the quantization

Suppose (M, ω,Φ) is a level k pre-quantized q-Hamiltonian
G -space. We had constructed

(Φ, E ⊗ Sop) : C l(TM) 99K A(k+h∨).

This defines a push-forward map

Φ∗ : KG
0 (M,C l(TM)) 99K KG

0 (G ,A(k+h∨)) ∼= Rk(G ).

Definition

The quantization of the level k pre-quantized q-Hamiltonian space
(M, ω,Φ) is defined as

Q(M) = Φ∗([M]) ∈ Rk(G )

where [M] ∈ KG
0 (M,C l(TM)) is the fundamental class.
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Quantization of q-Hamiltonian G -spaces

Q(M) = Φ∗([M]) ∈ Rk(G ) ∼= Z[Pk ].

Properties of the quantization:

Q(M1 ∪M2) = Q(M1) +Q(M2),

Q(M1 ×M2) = Q(M1)Q(M2),

Q(M∗) = Q(M)∗,

Let C be the conjugacy class of exp( 1
kµ), µ ∈ Pk . Then

Q(C) = τµ.
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Quantization of q-Hamiltonian G -spaces

For τ ∈ Rk(G ) = Z[Pk ], let τG ∈ Z be the multiplicity of τ0.

Theorem (Quantization commutes with reduction)

Let (M, ω,Φ) be a level k prequantized q-Hamiltonian G -space.
Then

Q(M)G = Q(M//G ).

This was proved by Alekseev-M-Woodward (1999), in terms of a
‘definition’ of Q(M)G in terms of fixed point data. Back then, we
did not know how to properly define Q(M).
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Quantization of Hamiltonian G -spaces

More generally, let N(µ), µ ∈ Pk be the multiplicities given as

Q(M) =
∑
µ∈Pk

N(µ)τµ.

where τµ ∈ Rk(G ) = Z[Pk ] are the basis elements.

Corollary

For all µ ∈ Pk ,
N(µ) = Q(k)(M//CG )

where C = G . exp(µ/k), and where

M//CG = Φ−1(C)/G = (M × C−)//G .

Corollary

Let ∆(M) ⊂ A be the moment polytope. Then N(µ) = 0 unless
µ ∈ Pk ∩ k∆(M).
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