IGA Lecture III: Twisted Spin_c structures

Eckhard Meinrenken

Adelaide, September 7, 2011

Review: Spin_c-structures

- \bullet (V, B) a finite-dimensional Euclidean vector space,
- $\mathbb{C} I(V)$ complex Clifford algebra: generators $v \in V$, relations

$$vv'+v'v=2B(v,v').$$

Then $\mathbb{C} I(V)$ is a finite-dimensional C^* -algebra.

Similarly, for a finite rank Euclidean vector bundle $V \to X$ with fiber metric B define a complex Clifford bundle $\mathbb{C} \ \mathsf{I}(V) \to X$.

Let $V \to X$ be a Euclidean vector bundle, rank(V) even.

Definition

A Spin_c -structure on V is a \mathbb{Z}_2 -graded Hermitian vector bundle $\mathsf{S} \to X$ with a *-isomorphism

$$\varrho \colon \mathbb{C} \mathsf{I}(V) \to \mathsf{End}(\mathsf{S}).$$

S is called the spinor module.

Let $V \to X$ be a Euclidean vector bundle, rank(V) even.

Definition

A Spin_c -structure on V is a \mathbb{Z}_2 -graded Hermitian vector bundle $\mathsf{S} \to X$ with a *-isomorphism

$$\varrho \colon \mathbb{C} \mathsf{I}(V) \to \mathsf{End}(\mathsf{S}).$$

S is called the spinor module.

Remarks

- The definition is equivalent to an orientation on V together with a lift of the structure group from SO(n) to $Spin_c(n)$. (Connes, Plymen.)
- If V has odd rank, one defines a ${\sf Spin}_c$ -structure on V to be a ${\sf Spin}_c$ -structure on $V\oplus \mathbb{R}$.

Let $V \rightarrow X$ be a Euclidean vector bundle.

Example

Suppose $J \in \Gamma(\mathsf{O}(V))$ is a complex structure, $J^2 = -\operatorname{id}_V$. Get $V^{\mathbb{C}} = V^+ \oplus V^-$. Then

$$S = \wedge (V^+)$$

defines a Spin_c -structure on V, with $\varrho(v) = \sqrt{2}(\epsilon(v^+) + \iota(v^-))$ for $v \in V$.

Let $V \rightarrow X$ be a Euclidean vector bundle.

Example

Suppose $J \in \Gamma(\mathsf{O}(V))$ is a complex structure, $J^2 = -\operatorname{id}_V$. Get $V^{\mathbb{C}} = V^+ \oplus V^-$. Then

$$S = \wedge (V^+)$$

defines a Spin_c -structure on V, with $\varrho(v) = \sqrt{2}(\epsilon(v^+) + \iota(v^-))$ for $v \in V$.

Example

Suppose $\omega \in \Gamma(\wedge^2 V^*)$ is symplectic; let R_ω be the corresponding skew-adjoint endomorphism. Then

$$J_{\omega} = \frac{R_{\omega}}{|R_{\omega}|} \in \Gamma(\mathsf{O}(V))$$

is a complex structure, defining a $Spin_c$ -structure on V.

Spin_c-structures

Basic properties

Any two Spin_c-structure S, S' on V differ by a line bundle:

$$S' = S \otimes L \leftrightarrow L = Hom_{\mathbb{C}I}(S, S').$$

• Obstructions to existence of Spin_c-structure:

$$W_3(V) \in H^3(X, \mathbb{Z}), \quad w_1(V) \in H^1(X, \mathbb{Z}_2).$$

Spin_c-structures

Basic properties

Any two Spin_c-structure S, S' on V differ by a line bundle:

$$S' = S \otimes L \leftrightarrow L = Hom_{\mathbb{C}I}(S, S').$$

• Obstructions to existence of Spin_c-structure:

$$W_3(V) \in H^3(X,\mathbb{Z}), \quad w_1(V) \in H^1(X,\mathbb{Z}_2).$$

Example

The dual S* of a spinor module is again a spinor module. Get a line bundle

$$K_S = Hom_{\mathbb{C} I}(S, S^*)$$

called the canonical line bundle for S. Note

$$K_{S\otimes I}=K_S\otimes L^{-2}$$
.

Spin_c-structures

If M is a manifold with a smooth ${\sf Spin}_c$ -structure ${\sf S}$, one defines the ${\sf Spin}_c$ -Dirac operator

$$\partial \!\!\!\!/ : \Gamma(\mathsf{S}) \xrightarrow{\nabla} \Gamma(\mathit{TM} \otimes \mathsf{S}) \xrightarrow{\varrho} \Gamma(\mathsf{S}).$$

If $L \to M$ is a line bundle, denote by ∂_L the ${\sf Spin}_c$ -Dirac operator for ${\sf S} \otimes L$.

Hamiltonian G-space $\Phi \colon M \to \mathfrak{g}^*$

- $\mathbf{0}$ $\mathrm{d}\omega=\mathbf{0}$,

Hamiltonian G-space $\Phi: M \to \mathfrak{g}^*$

- $\mathbf{0}$ d $\omega = \mathbf{0}$,
- 1. Pick *G*-invariant Riemannian metric on $M\Rightarrow\omega$ determines a Spin_c-structure.

Hamiltonian G-space $\Phi \colon M \to \mathfrak{g}^*$

- $\mathbf{0}$ $\mathrm{d}\omega=\mathbf{0}$,
- \bullet ker(ω) = 0.
- 1. Pick *G*-invariant Riemannian metric on $M\Rightarrow\omega$ determines a Spin_c-structure.
- 2. Assume (M, ω, Φ) pre-quantizable; pick a pre-quantum line bundle $L \to M$.

Hamiltonian G-space $\Phi \colon M \to \mathfrak{g}^*$

- $\mathbf{0}$ $\mathrm{d}\omega=\mathbf{0}$,
- 1. Pick *G*-invariant Riemannian metric on $M\Rightarrow\omega$ determines a Spin_c-structure.
- 2. Assume (M, ω, Φ) pre-quantizable; pick a pre-quantum line bundle $L \to M$.
- 3. Define

$$Q(M) := \mathsf{index}_G(\emptyset_L) \in R(G).$$

Hamiltonian G-space $\Phi \colon M \to \mathfrak{g}^*$

- $\mathbf{a} \omega = \mathbf{0}$
- 1. Pick G-invariant Riemannian metric on $M\Rightarrow\omega$ determines a Spin_c-structure.
- 2. Assume (M, ω, Φ) pre-quantizable; pick a pre-quantum line bundle $L \to M$.
- 3. Define

$$Q(M) := \operatorname{index}_G(\emptyset_L) \in R(G).$$

For q-Hamiltonian spaces already Step 1 fails, since ω may be degenerate.

Review: q-Hamiltonian G-spaces

Let G be a compact Lie group, and \cdot an invariant inner product on $\mathfrak{g}=\mathrm{Lie}(G)$.

Definition

A q-Hamiltonian G-space (M, ω, Φ) is a G-manifold M, with $\omega \in \Omega^2(M)^G$ and $\Phi \in C^{\infty}(M, G)^G$, satisfying

- $\bullet \iota(\xi_M)\omega = -\frac{1}{2}\Phi^*(\theta^L + \theta^R) \cdot \xi,$

For q-Hamiltonian spaces already Step 1 fails:

Problems:

- There is no notion of 'compatible almost complex structure'
- In general, q-Hamiltonian G-spaces need not even admit Spin_c-structures.

For q-Hamiltonian spaces already Step 1 fails:

Problems:

- There is no notion of 'compatible almost complex structure'
- In general, q-Hamiltonian *G*-spaces need not even admit Spin_c-structures.

Example

- G = Spin(5) has a conjugacy class $C \cong S^4$ (does not admit almost complex structure).
- G = Spin(2k+1), k > 2 has a conjugacy class not admitting a Spin_c -structure.

However, we will show that q-Hamiltonian spaces carry 'twisted' Spin_c-structures.

However, we will show that q-Hamiltonian spaces carry 'twisted' $Spin_c$ -structures.

The definition of the twisted $Spin_c$ -structures involves Dixmier-Douady bundles

Notation:

- H separable complex Hilbert space, possibly dim $H < \infty$,
- $\mathbb{B}(H)$ bounded linear operators,
- $\mathbb{K}(H)$ compact operators $(=\overline{\mathbb{B}_{\mathsf{fin}}(H)})$

Fact: $Aut(\mathbb{K}(H)) = PU(H)$ (strong topology).

Definition

A DD-bundle $\mathcal{A} \to X$ is a \mathbb{Z}_2 -graded bundle of *-algebras modeled on $\mathbb{K}(H)$, (for H a \mathbb{Z}_2 -graded Hilbert space), with structure group the even part of PU(H).

Definition

A DD-bundle $\mathcal{A} \to X$ is a \mathbb{Z}_2 -graded bundle of *-algebras modeled on $\mathbb{K}(H)$, (for H a \mathbb{Z}_2 -graded Hilbert space), with structure group the even part of PU(H).

Theorem (Dixmier-Douady)

The obstruction to writing $A = \mathbb{K}(\mathcal{E})$, with \mathcal{E} a \mathbb{Z}_2 -graded bundle of Hilbert spaces, is a class

$$\mathsf{DD}(\mathcal{A}) \in H^3(X,\mathbb{Z}) \times H^1(X,\mathbb{Z}_2).$$

Hence, the trivially graded DD bundles give a 'realization' of $H^3(X,\mathbb{Z})$, similar to line bundles 'realizing' $H^2(X,\mathbb{Z})$.

Hence, the trivially graded DD bundles give a 'realization' of $H^3(X,\mathbb{Z})$, similar to line bundles 'realizing' $H^2(X,\mathbb{Z})$.

Remark

This framework is not convenient for a Chern-Weil theory. A more differential-geometric realization is given by the theory of bundle gerbes.

Definition

Let $\mathcal{A}_1 o X_1, \ \mathcal{A}_2 o X_2$ be *DD*-bundles. A Morita morphism

$$(\Phi, \mathcal{E})$$
: $\mathcal{A}_1 \dashrightarrow \mathcal{A}_2$

is a map $\Phi \colon X_1 \to X_2$ together with a \mathbb{Z}_2 -graded bundle $\mathcal{E} \to X_1$ of bimodules

$$\Phi^*\mathcal{A}_2 \circlearrowleft \mathcal{E} \circlearrowleft \mathcal{A}_1,$$

locally modeled on $\mathbb{K}(H_2) \circlearrowleft \mathbb{K}(H_1, H_2) \circlearrowleft \mathbb{K}(H_1)$.

Definition

Let $\mathcal{A}_1 o X_1, \ \mathcal{A}_2 o X_2$ be *DD*-bundles. A Morita morphism

$$(\Phi, \mathcal{E})$$
: $\mathcal{A}_1 \dashrightarrow \mathcal{A}_2$

is a map $\Phi \colon X_1 \to X_2$ together with a \mathbb{Z}_2 -graded bundle $\mathcal{E} \to X_1$ of bimodules

$$\Phi^* \mathcal{A}_2 \circlearrowleft \mathcal{E} \circlearrowleft \mathcal{A}_1$$

locally modeled on $\mathbb{K}(H_2) \circlearrowleft \mathbb{K}(H_1, H_2) \circlearrowleft \mathbb{K}(H_1)$.

Remark

- (Φ, \mathcal{E}) : $A_1 \longrightarrow A_2$ exists if and only if $DD(A_1) = \Phi^* DD(A_2)$.
- Any two Morita bimodules $\mathcal{E}, \mathcal{E}'$ differ by a line bundle:

$$\mathcal{E}' = \mathcal{E} \otimes L \leftrightarrow L = \mathsf{Hom}_{\Phi^* \mathcal{A}_2 - \mathcal{A}_1}(\mathcal{E}, \mathcal{E}').$$

Example

V o X Euclidean vector bundle of even rank $\Rightarrow \mathbb{C}\operatorname{I}(V)$ is a DD-bundle. A Morita trivialization

$$(p, S^{op}): \mathbb{C} I(V) \dashrightarrow \mathbb{C}$$

is a Spin_c-structure. The DD-class is given by

$$DD(S) = (W^3(V), w_1(V)) \in H^3(X, \mathbb{Z}) \times H^1(X, \mathbb{Z}_2).$$

Review of linear Dirac structures

• A Dirac structure on vector space V is a Lagrangian subspace $E \subset \mathbb{V} = V \oplus V^*$.

Review of linear Dirac structures

- A Dirac structure on vector space V is a Lagrangian subspace $E \subset \mathbb{V} = V \oplus V^*$.
- ullet For $\Theta\colon V_1 o V_2$ and $\omega\in\wedge^2V_1^*$ write

$$v_1 + \mu_1 \sim_{(\Theta,\omega)} v_2 + \mu_2 \Leftrightarrow \begin{cases} v_2 = \Theta(v_1) \\ \mu_1 = \Theta^*(\mu_2) + \omega(v_1,\cdot) \end{cases}$$

Review of linear Dirac structures

- A Dirac structure on vector space V is a Lagrangian subspace $E \subset \mathbb{V} = V \oplus V^*$.
- ullet For $\Theta\colon V_1 o V_2$ and $\omega\in\wedge^2V_1^*$ write

$$v_1 + \mu_1 \sim_{(\Theta,\omega)} v_2 + \mu_2 \Leftrightarrow \begin{cases} v_2 = \Theta(v_1) \\ \mu_1 = \Theta^*(\mu_2) + \omega(v_1,\cdot) \end{cases}$$

• It defines a Dirac morphism (Θ, ω) : $(\mathbb{V}_1, E_1) \dashrightarrow (\mathbb{V}_2, E_2)$ if every element of E_2 is related to a unique element of E_1 .

Review of linear Dirac structures

- A Dirac structure on vector space V is a Lagrangian subspace $E \subset \mathbb{V} = V \oplus V^*$.
- ullet For $\Theta\colon V_1 o V_2$ and $\omega\in\wedge^2V_1^*$ write

$$v_1 + \mu_1 \sim_{(\Theta,\omega)} v_2 + \mu_2 \Leftrightarrow \begin{cases} v_2 = \Theta(v_1) \\ \mu_1 = \Theta^*(\mu_2) + \omega(v_1,\cdot) \end{cases}$$

- It defines a Dirac morphism (Θ, ω) : $(\mathbb{V}_1, E_1) \dashrightarrow (\mathbb{V}_2, E_2)$ if every element of E_2 is related to a unique element of E_1 .
- The definitions extend to vector bundles $V \to X$.

Example

 Hamiltonian G-spaces are described as G-equivariant Dirac morphisms

$$(\Phi,\omega)$$
: $(\mathbb{T}M,TM) \longrightarrow (\mathcal{T}\mathfrak{g}^*,E_{\mathfrak{g}^*})$.

 q-Hamiltonian G-spaces are described as G-equivariant Dirac morphisms

$$(\Phi,\omega)$$
: $(\mathbb{T}M,TM) \longrightarrow (\mathbb{T}G_{\eta},E_G)$.

There is a multiplication morphism

$$(\mathsf{Mult}_G, \varsigma) \colon (\mathbb{T}G_\eta, E_G) \times (\mathbb{T}G_\eta, E_G) \dashrightarrow (\mathbb{T}G_\eta, E_G).$$

The Dirac-Dixmier-Douady functor

Theorem (Alekseev-M, 2010)

There is a functor from Dirac structures on vector bundles $V \to X$ to DD-bundles:

$$E \mapsto \mathcal{A}_E$$
.

Furthermore, there are canonical Morita isomorphisms

$$\mathbb{C} I(V) \dashrightarrow \mathcal{A}_V, \quad \mathbb{C} \dashrightarrow \mathcal{A}_{V^*}$$

The Dirac-Dixmier-Douady functor

Theorem (Alekseev-M, 2010)

There is a functor from Dirac structures on vector bundles $V \to X$ to DD-bundles:

$$E\mapsto \mathcal{A}_{E}$$
.

Furthermore, there are canonical Morita isomorphisms

$$\mathbb{C} I(V) \dashrightarrow \mathcal{A}_V, \quad \mathbb{C} \dashrightarrow \mathcal{A}_{V^*}$$

N.B.: We identify two Morita morphisms $\mathcal{E}, \mathcal{E}' \colon \mathcal{A}_1 \dashrightarrow \mathcal{A}_2$ if they are related by a trivial line bundle.

Example

The Cartan Dirac structure $(\mathbb{T}G_{\eta}, E_G)$ defines a DD-bundle $\mathcal{A}^{\mathsf{Spin}} := \mathcal{A}_{E_G} \to G$. The 'multiplication morphism' for the Cartan Dirac structure gives a morphism

$$\mathsf{Mult}_* \colon \mathcal{A}^{\mathsf{Spin}} \times \mathcal{A}^{\mathsf{Spin}} \dashrightarrow \mathcal{A}^{\mathsf{Spin}}.$$

Example

The Cartan Dirac structure $(\mathbb{T}G_{\eta}, E_G)$ defines a DD-bundle $\mathcal{A}^{\mathsf{Spin}} := \mathcal{A}_{E_G} \to G$. The 'multiplication morphism' for the Cartan Dirac structure gives a morphism

$$\mathsf{Mult}_* : \mathcal{A}^{\mathsf{Spin}} \times \mathcal{A}^{\mathsf{Spin}} \dashrightarrow \mathcal{A}^{\mathsf{Spin}}.$$

Example

A q-Hamiltonian G-space (M, ω, Φ) defines a Dirac morphism

$$(d\Phi, \omega)$$
: $(\mathbb{T}M, TM) \longrightarrow (\mathbb{T}G_n, E_G)$.

Hence we get a Morita morphism

$$\mathbb{C} \mathsf{I}(TM) \dashrightarrow \mathcal{A}_{TM} \dashrightarrow \mathcal{A}_{E_G} = \mathcal{A}^{\mathsf{Spin}},$$

a 'twisted Spin_c-structure'.

Construction of the DDD functor $E \mapsto A_E$

Outline

- From $E \subset \mathbb{V}$, construct family of skew-adjoint operators D_x , $x \in X$ acting on real Hilbert spaces \mathcal{V}_x .
- ② From $D = \{D_x\}$, construct family of 'polarizations' of V_x .
- **3** From the polarization, construct *DD*-bundle $A \rightarrow X$.

Construction of the DDD functor $E \mapsto A_E$

Outline

- From $E \subset \mathbb{V}$, construct family of skew-adjoint operators D_x , $x \in X$ acting on real Hilbert spaces \mathcal{V}_x .
- ② From $D = \{D_x\}$, construct family of 'polarizations' of \mathcal{V}_x .
- **3** From the polarization, construct *DD*-bundle $A \rightarrow X$.

Inspired by and/or similar to:

Carey-Mickelsson-Murray 1997, Lott 2002, Atiyah-Segal 2004, Freed-Hopkins-Teleman 2005, Bouwknegt-Mathai-Wu 2011.

Assume X = pt, so V is a vector space.

Choice of Euclidean metric B identifies

$$\mathsf{Lag}(\mathbb{V}) \cong \mathsf{O}(V).$$

Here $A \in O(V)$ corresponds to

$$E = \{((A-I)v, \frac{1}{2}(A+I)v) \in \mathbb{V} = V \oplus V^* | v \in V\}.$$

Assume X = pt, so V is a vector space.

Choice of Euclidean metric B identifies

$$Lag(V) \cong O(V)$$
.

Here $A \in O(V)$ corresponds to

$$E = \{((A-I)v, \frac{1}{2}(A+I)v) \in \mathbb{V} = V \oplus V^* | v \in V\}.$$

Define skew-adjoint operator $D_E = \frac{\partial}{\partial t}$ on $\mathcal{V} = L^2([0,1], V)$, with domain

$$dom(D_E) = \{f : f(1) = -Af(0)\}.$$

Example

 $E = V^*$ corresponds to A = I, and f(1) = -Af(0) are anti-periodic boundary conditions. Note $ker(D_E) = 0$.

Example

E = V corresponds to A = -I, and f(1) = -Af(0) are periodic boundary conditions. Note $\ker(D_E) = V$.

Example

 $E = V^*$ corresponds to A = I, and f(1) = -Af(0) are anti-periodic boundary conditions. Note $\ker(D_E) = 0$.

Example

E = V corresponds to A = -I, and f(1) = -Af(0) are periodic boundary conditions. Note $\ker(D_E) = V$.

Note that in general, $ker(D_E) = ker(A + I) = E \cap V$.

Thus, if $V \to X$ is a vector bundle, the choice of a Euclidean metric takes us from Dirac structures (\mathbb{V}, E) to skew-adjoint Fredholm families

$$D_E = \{(D_E)_x, x \in X\},\$$

where $(D_E)_x$ is $\frac{\partial}{\partial t}$ on $\mathcal{V}_x = L^2([0,1], V_x)$, with boundary conditions determined by E_x .

Step 2: Polarizations

Let \mathcal{V} be a real Hilbert space. Recall $A \in \mathbb{B}(\mathcal{V})$ is Hilbert-Schmidt if $\operatorname{tr}(A^*A) < \infty$.

Definition

An even polarization on \mathcal{V} is an equivalence class of orthogonal complex structures $J \in O(\mathcal{V})$, where

$$J \sim J' \Leftrightarrow J - J'$$
 is Hilbert-Schmidt.

Step 2: Polarizations

Let \mathcal{V} be a real Hilbert space. Recall $A \in \mathbb{B}(\mathcal{V})$ is Hilbert-Schmidt if $\operatorname{tr}(A^*A) < \infty$.

Definition

An even polarization on \mathcal{V} is an equivalence class of orthogonal complex structures $J \in O(\mathcal{V})$, where

$$J \sim J' \Leftrightarrow J - J'$$
 is Hilbert-Schmidt.

An odd polarization on \mathcal{V} is an even polarization on $\mathcal{V} \oplus \mathbb{R}$.

Fact: Every skew-adjoint Fredholm operator D on V determines a polarization, of parity depending on the parity of dim ker(D).

Fact: Every skew-adjoint Fredholm operator D on V determines a polarization, of parity depending on the parity of dim ker(D).

If dim ker(D) even, choose $S = -S^* \in \mathbb{B}_{fin}(\mathcal{V})$ with $\ker(D+S) = 0$.

Fact: Every skew-adjoint Fredholm operator D on V determines a polarization, of parity depending on the parity of dim ker(D).

If dim ker(D) even, choose $S = -S^* \in \mathbb{B}_{fin}(\mathcal{V})$ with $\ker(D+S) = 0$.

Lemma

The even polarization defined by $J = \frac{D+S}{|D+S|}$ does not depend on choice of S.

Fact: Every skew-adjoint Fredholm operator D on V determines a polarization, of parity depending on the parity of dim ker(D).

If dim ker(D) even, choose $S = -S^* \in \mathbb{B}_{\mathsf{fin}}(\mathcal{V})$ with $\mathsf{ker}(D+S) = 0$.

Lemma

The even polarization defined by $J = \frac{D+S}{|D+S|}$ does not depend on choice of S.

If dim $\ker(D)$ odd, replace $\mathcal V$ with $\mathcal V\oplus\mathbb R$, and obtain odd polarization.

Step 3: The Dixmier-Douady bundle

- ullet ${\cal V}$ a real Hilbert space.
- ullet $\mathbb{C} \, \mathsf{I}(\mathcal{V})$ its complex Clifford algebra.
- $S_J = \overline{\wedge \mathcal{V}_+}$ spinor module defined by $J \in O(\mathcal{V}), \ J^2 = -\operatorname{id}_{\mathcal{V}}$ (Hilbert space completion).

Theorem (Shale-Stinespring, 1965)

For orthogonal complex structures J, J' on V,

$$\dim \mathsf{Hom}_{\mathbb{C}\mathsf{I}}(\mathsf{S}_J,\mathsf{S}_{J'}) = \begin{cases} 1 & \text{if } J \sim J' \\ 0 & \text{otherwise} \end{cases}$$

Thus $\mathbb{K}(S_J) = \mathbb{K}(S_{J'})$ canonically if $J \sim J'$.

Step 3: The Dixmier-Douady bundle

From (\mathbb{V}, E) we constructed the family D_E of skew-adjoint Fredholm operators on $\mathcal{V} = \bigcup_{x \in X}, \ \mathcal{V}_x = L^2([0,1], V)$, which in turn defines a polarization on \mathcal{V} .

Use fiberwise representatives J_x to define

$$\mathcal{A}_{x}=\mathbb{K}(\mathsf{S}_{J_{x}}).$$

Then $A = \bigcup_x A_x$ is a well-defined *DD*-bundle.

Remark

- $\ker(D_E) \cong E \cap V$.
- Hence if $E = V^*$, then $\ker(D_E) = 0$, and $\mathcal{A} = \mathbb{K}(S_J)$ for $J = \frac{D_E}{|D_E|}$.
- If E = V, then $\ker(D_E) = V$, and $V = V \oplus V^{\perp}$. This explains $\mathbb{C} \, \mathsf{I}(V) \dashrightarrow \mathcal{A}$.

Example

For the Cartan-Dirac structure $\mathbb{T}G, E$), get family

$$D_g = \frac{\partial}{\partial t}, \quad \operatorname{dom}(D_g) = \{ f \in L^2([0,1],\mathfrak{g}) | \ f(1) = -\operatorname{Ad}_g f(0) \}.$$

Let $\mathcal{A}^{\mathsf{Spin}} := \mathcal{A}_{\mathsf{E}_{\mathsf{G}}}$. If G is connected, then

$$\mathsf{DD}(\mathcal{A}^{\mathsf{Spin}}) \in H^3(G,\mathbb{Z}) \times H^1(G,\mathbb{Z}_2)$$

is the pull-back of the generators of $H^3(SO(\mathfrak{g}),\mathbb{Z})=\mathbb{Z}$ resp. $H^1(SO(\mathfrak{g}),\mathbb{Z}_2)=\mathbb{Z}_2$ under Ad: $G\to SO(\mathfrak{g})$. (See Atiyah-Segal.)

In particular, if G simple and simply connected, then

$$\mathsf{DD}(\mathcal{A}^{\mathsf{Spin}}) = \mathsf{h}^{\vee} x$$

where $x \in H^3(G,\mathbb{Z}) \cong \mathbb{Z}$ is the generator, and h^{\vee} is the dual Coxeter number.

In particular, if G simple and simply connected, then

$$\mathsf{DD}(\mathcal{A}^{\mathsf{Spin}}) = \mathsf{h}^{\vee} x$$

where $x \in H^3(G, \mathbb{Z}) \cong \mathbb{Z}$ is the generator, and h^{\vee} is the dual Coxeter number.

Corollary

Suppose (M, ω, Φ) is a q-Hamiltonian G-space. Then

$$W_3(M) = h^{\vee} \Phi^* x, \ w_1(M) = 0.$$

In particular, if G simple and simply connected, then

$$\mathsf{DD}(\mathcal{A}^{\mathsf{Spin}}) = \mathsf{h}^{\vee} x$$

where $x \in H^3(G, \mathbb{Z}) \cong \mathbb{Z}$ is the generator, and h^{\vee} is the dual Coxeter number.

Corollary

Suppose (M, ω, Φ) is a q-Hamiltonian G-space. Then

$$W_3(M) = h^{\vee} \Phi^* x, \ w_1(M) = 0.$$

This follows from existence of $\mathbb{C} I(TM) \dashrightarrow \mathcal{A}^{Spin}$. In particular, this result applies to the conjugacy classes of G.