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Review: Spin_-structures

e (V, B) a finite-dimensional Euclidean vector space,

@ CI(V) complex Clifford algebra: generators v € V, relations

w' +V'v =2B(v,V).

Then CI(V) is a finite-dimensional C*-algebra.

Similarly, for a finite rank Euclidean vector bundle V — X with
fiber metric B define a complex Clifford bundle CI(V) — X.
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Let V — X be a Euclidean vector bundle, rank(V') even.

Definition
A Spin_-structure on V is a Zy-graded Hermitian vector bundle
S — X with a *-isomorphism

0: CI(V) — End(S).

S is called the spinor module.
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Let V — X be a Euclidean vector bundle, rank(V') even.

Definition
A Spin_-structure on V is a Zy-graded Hermitian vector bundle
S — X with a *-isomorphism

0: CI(V) — End(S).

S is called the spinor module.

RENEIS

| A

@ The definition is equivalent to an orientation on V together
with a lift of the structure group from SO(n) to Spin(n).
(Connes, Plymen.)

o If V has odd rank, one defines a Spin_-structure on V to be a
Spin-structure on V @ R.

<
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Let V — X be a Euclidean vector bundle.

Example

Suppose J € [(O(V)) is a complex structure, J2 = —idy. Get
VE=VT& V. Then

S=A(V")

defines a Spin_-structure on V, with o(v) = v2(e(vT) + 1(v7))
forve V. )
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Let V — X be a Euclidean vector bundle.

Example

Suppose J € [(O(V)) is a complex structure, J> = —idy. Get
VE = V+ @ V. Then

S=A(V")

defines a Spin_-structure on V/, with o(v) = v2(e(v*) + t(v 7))
forve V.

| \

Example

Suppose w € [(A?V*) is symplectic; let R, be the corresponding
skew-adjoint endomorphism. Then
R

Jo = RS r(o(v))

is a complex structure, defining a Spin_-structure on V.

v
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Spin_-structures

Basic properties

@ Any two Spin_-structure S, S’ on V differ by a line bundle:

S=S®Ls L= Hom(c|(S,S/).

@ Obstructions to existence of Spin_-structure:

Ws(V) € H3(X,Z), wi(V) e HY(X,Zy).
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Spin_-structures

@ Any two Spin_-structure S, S’ on V differ by a line bundle:

S=S®Ls L= Hom(c|(S,S/).
@ Obstructions to existence of Spin_-structure:

Ws(V) € H3(X,Z), wi(V) e HY(X,Zy).

The dual S* of a spinor module is again a spinor module. Get a
line bundle

Ks = Hom(c |(5, S*)

called the canonical line bundle for S. Note

Ksor = Ks @ L2,
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Spin_-structures

If M is a manifold with a smooth Spin_-structure S, one defines
the Spin_-Dirac operator

P:T(S) L T(TM®S) % I(S).

If L — M is a line bundle, denote by @, the Spin_-Dirac operator
for S® L.
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Quantization of Hamiltonian G-spaces (in a nutshell)

Hamiltonian G-space ®: M — g*
Q (ém)w = —d(®,8),
Q@ dw=0,
@ ker(w) =0.
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Quantization of Hamiltonian G-spaces (in a nutshell)

Hamiltonian G-space ®: M — g*
Q (ém)w = —d(®,8),
Q@ dw=0,
@ ker(w) =0.

1. Pick G-invariant Riemannian metric on M = w determines a
Spin_-structure.
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Quantization of Hamiltonian G-spaces (in a nutshell)

Hamiltonian G-space ®: M — g*
Q (ém)w = —d(®,8),
Q@ dw=0,
@ ker(w) =0.

1. Pick G-invariant Riemannian metric on M = w determines a
Spin_-structure.

2. Assume (M, w, ®) pre-quantizable; pick a pre-quantum line
bundle L — M.
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Quantization of Hamiltonian G-spaces (in a nutshell)

Hamiltonian G-space ®: M — g*
Q (ém)w = —d(®,8),
Q@ dw=0,
@ ker(w) =0.

1. Pick G-invariant Riemannian metric on M = w determines a
Spin_-structure.

2. Assume (M, w, ®) pre-quantizable; pick a pre-quantum line
bundle L — M.

3. Define

Q(M) := indexg (@) € R(G).
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Quantization of Hamiltonian G-spaces (in a nutshell)

Hamiltonian G-space ®: M — g*
Q (ém)w = —d(®,8),
Q@ dw=0,
@ ker(w) =0.

1. Pick G-invariant Riemannian metric on M = w determines a
Spin_-structure.

2. Assume (M, w, ®) pre-quantizable; pick a pre-quantum line
bundle L — M.

3. Define

Q(M) := indexg (@) € R(G).

For g-Hamiltonian spaces already Step 1 fails, since w may be
degenerate.

Eckhard Meinrenken IGA Lecture Ill: Twisted Spin. structures



Review: g-Hamiltonian G-spaces

Let G be a compact Lie group, and - an invariant inner product on
g = Lie(G).

Definition
A g-Hamiltonian G-space (M,w, ®) is a G-manifold M, with
w € Q*(M)® and ® € C®(M, G)®, satisfying

@ (ém)w = —3*(0" +0F) - ¢,

Q dw = —d*p,

Q ker(w) Nker(dd) = 0.
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For g-Hamiltonian spaces already Step 1 fails:

Problems:

@ There is no notion of ‘compatible almost complex structure’

@ In general, g-Hamiltonian G-spaces need not even admit
Spin-structures.
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For g-Hamiltonian spaces already Step 1 fails:

Problems:
@ There is no notion of ‘compatible almost complex structure’

@ In general, g-Hamiltonian G-spaces need not even admit
Spin-structures.

e G = Spin(5) has a conjugacy class C =2 S* (does not admit
almost complex structure).

@ G =Spin(2k + 1), k > 2 has a conjugacy class not admitting
a Spin_-structure.
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However, we will show that g-Hamiltonian spaces carry ‘twisted'
Spin_-structures.
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However, we will show that g-Hamiltonian spaces carry ‘twisted'
Spin_-structures.

The definition of the twisted Spin_-structures involves
Dixmier-Douady bundles J
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Dixmier-Douady theory

Notation:
@ H separable complex Hilbert space, possibly dim H < oo,
e B(H) bounded linear operators,
o K(H) compact operators (= By, (H))

Fact: Aut(KK(H)) = PU(H) (strong topology). |
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Dixmier-Douady theory

Definition

A DD-bundle A — X is a Zy-graded bundle of *-algebras modeled
on K(H), (for H a Zy-graded Hilbert space), with structure group
the even part of PU(H).
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Dixmier-Douady theory

Definition

A DD-bundle A — X is a Zy-graded bundle of *-algebras modeled
on K(H), (for H a Zy-graded Hilbert space), with structure group
the even part of PU(H).

Theorem (Dixmier-Douady)
The obstruction to writing

A =K(E), with & a Zp-graded
bundle of Hilbert spaces, is a
class

DD(A) € H3(X,Z) x HY(X, Zy)

<

Eckhard Meinrenken IGA Lecture Ill: Twisted Spin. structures



Dixmier-Douady theory

Hence, the trivially graded DD bundles give a ‘realization’ of
H3(X,Z), similar to line bundles ‘realizing’ H2(X,Z). ’

Eckhard Meinrenken IGA Lecture Ill: Twisted Spin. structures



Dixmier-Douady theory

Hence, the trivially graded DD bundles give a ‘realization’ of
H3(X,Z), similar to line bundles ‘realizing’ H2(X,Z).

Remark

This framework is not convenient for a Chern-Weil theory. A more
differential-geometric realization is given by the theory of bundle
gerbes.

| \
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Dixmier-Douady theory

Let A; — X1, A> — X5 be DD-bundles. A Morita morphism

((D,g)i Al -——> ,,42

is a map ®: X; — Xo together with a Zy-graded bundle £ — Xj of
bimodules
D A, OE O Ay,

locally modeled on K(H,) O K(Hi, Ha) O K(Hy).
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Dixmier-Douady theory

Let A; — X1, A> — X5 be DD-bundles. A Morita morphism
((D,g)i Al == ./42

is a map ®: X; — Xo together with a Zy-graded bundle £ — Xj of
bimodules
D A, OE O Ay,

locally modeled on K(H,) O K(Hi, Ha) O K(Hy).

o (¢,8): Ay --» Aj exists if and only if DD(A;) = ®* DD(Ay).
e Any two Morita bimodules £, &’ differ by a line bundle:

E'=€ExL< L= Homq,*Az_Al(é',E').
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Dixmier-Douady theory

Example

V' — X Euclidean vector bundle of even rank = CI(V) is a
DD-bundle. A Morita trivialization

(p,S?): CI(V) --» C

is a Spin-structure. The DD-class is given by

DD(S) = (W3(V), wi(V)) € H3(X,Z) x H (X, Zy).
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From Dirac structures to DD bundles

Review of linear Dirac structures

@ A Dirac structure on vector space V is a Lagrangian subspace
ECcV=VegV"
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From Dirac structures to DD bundles

Review of linear Dirac structures

@ A Dirac structure on vector space V is a Lagrangian subspace
ECcV=VegV"

@ For©: V| - VL and w € /\2V1* write

vo = O(v1)

i+ H1 ~ew) V2 + He = N
) {m — 0" (u2) + w(u1.")

Eckhard Meinrenken IGA Lecture Ill: Twisted Spin. structures



From Dirac structures to DD bundles

Review of linear Dirac structures

@ A Dirac structure on vector space V is a Lagrangian subspace
ECcV=VegV"

@ For©: V| - VL and w € /\2V1* write

vo = O(v1)

i+ H1 ~ew) V2 + He = N
0 {m — 0" (12) +w(u,")

o It defines a Dirac morphism (©,w): (V1, E1) --+ (Va2, E) if
every element of E; is related to a unique element of E;.
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From Dirac structures to DD bundles

Review of linear Dirac structures

@ A Dirac structure on vector space V is a Lagrangian subspace
ECcV=VegV".
@ For©: V| - VL and w € /\2V1* write

Vi+ U1 ~ew) V2t e = v2=0(n)
2 p1 = 0 () + w(va, )

o It defines a Dirac morphism (©,w): (V1, E1) --+ (Va2, E) if
every element of E; is related to a unique element of E;.

@ The definitions extend to vector bundles V — X.
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From Dirac structures to DD bundles

@ Hamiltonian G-spaces are described as G-equivariant Dirac
morphisms

(b, w): (TM, TM) --» (Tg", Eg-).

@ g-Hamiltonian G-spaces are described as G-equivariant Dirac
morphisms

(®,w): (TM, TM) --» (TG, Eg).

@ There is a multiplication morphism

(I\/Iultc;,g): (TGn, Eg) X (TGT], E(_;) -—2 (TGn, EG).
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The Dirac-Dixmier-Douady functor

Theorem (Alekseev-M, 2010)

There is a functor from Dirac structures on vector bundles V — X
to DD-bundles:

E'—>.AE.

Furthermore, there are canonical Morita isomorphisms

CI(V) -=> Ay, C--» Ay
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The Dirac-Dixmier-Douady functor

Theorem (Alekseev-M, 2010)

There is a functor from Dirac structures on vector bundles V — X
to DD-bundles:

E'—>.AE.

Furthermore, there are canonical Morita isomorphisms

CI(V) -=> Ay, C--» Ay

N.B.: We identify two Morita morphisms &,&": A; --+ A, if they
are related by a trivial line bundle.
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The Cartan Dirac structure (TG, Eg) defines a DD-bundle
ASPiIn .— Ag. — G. The ‘multiplication morphism’ for the Cartan
Dirac structure gives a morphism

Mult, : ASPM x ASPIn __, ASPIn,
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Example

The Cartan Dirac structure (TG, Eg) defines a DD-bundle

ASPiIn .— Ag. — G. The ‘multiplication morphism’ for the Cartan
Dirac structure gives a morphism

Mult, : ASpin % ASpin — ASpin.

| A\

Example

A g-Hamiltonian G-space (M,w, ®) defines a Dirac morphism
(d®,w): (TM, TM) --» (TG,, Eg).
Hence we get a Morita morphism

Cl(TM) Sog) ATM =gy ‘AEG — ASp|n7

a 'twisted Spin_-structure’.

A\
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Construction of the DDD functor E — Afr

@ From E C V, construct family of skew-adjoint operators
Dy, x € X acting on real Hilbert spaces V.

@ From D = {Dy}, construct family of ‘polarizations’ of V.
© From the polarization, construct DD-bundle A — X.
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Construction of the DDD functor E — Afr

@ From E C V, construct family of skew-adjoint operators
Dy, x € X acting on real Hilbert spaces V.

@ From D = {Dy}, construct family of ‘polarizations’ of V.
© From the polarization, construct DD-bundle A — X.

Inspired by and/or similar to:
Carey-Mickelsson-Murray 1997, Lott 2002, Atiyah-Segal 2004,
Freed-Hopkins-Teleman 2005, Bouwknegt-Mathai-Wu 2011.
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Step 1: Constructing {Dx, x € X}

Assume X = pt, so V is a vector space.

Choice of Euclidean metric B identifies
Lag(V) = O(V).

Here A € O(V) corresponds to

E={(A-Nv.3(A+)v)eV=Vea V*ve V]
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Step 1: Constructing {Dx, x € X}

Assume X = pt, so V is a vector space.
Choice of Euclidean metric B identifies

Lag(V) = O(V).
Here A € O(V) corresponds to

E={(A-Nv.3(A+)v)eV=Vea V*ve V]

Define skew-adjoint operator Dg = % on V = L2([0,1], V), with
domain

dom(Dg) = {f: f(1) = —AF(0)}.
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Step 1: Constructing {Dx, x € X}

E = V* corresponds to A=/, and f(1) = —Af(0) are
anti-periodic boundary conditions. Note ker(Dg) = 0.

Example

E =V corresponds to A = —/, and f(1) = —Af(0) are periodic
boundary conditions. Note ker(Dg) = V.

| A
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Step 1: Constructing {Dx, x € X}

E = V* corresponds to A=/, and f(1) = —Af(0) are
anti-periodic boundary conditions. Note ker(Dg) = 0.

Example

E =V corresponds to A = —/, and f(1) = —Af(0) are periodic
boundary conditions. Note ker(Dg) = V.

| \

Note that in general, ker(Dg) = ker(A+ 1) =EN V.

N
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Thus, if V — X is a vector bundle, the choice of a Euclidean
metric takes us from Dirac structures (V, E) to skew-adjoint
Fredholm families

DE = {(DE)X, X € X},

where (Dg)y is % on V, = L2([0,1], Vi), with boundary
conditions determined by E.
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Step 2: Polarizations

Let V be a real Hilbert space. Recall A € B(V) is Hilbert-Schmidt
if tr(A*A) < oo.

Definition
An even polarization on V is an equivalence class of orthogonal
complex structures J € O(V), where

J~J & J—J is Hilbert-Schmidt.
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Step 2: Polarizations

Let V be a real Hilbert space. Recall A € B(V) is Hilbert-Schmidt
if tr(A*A) < oo.

Definition
An even polarization on V is an equivalence class of orthogonal
complex structures J € O(V), where

J~J & J—J is Hilbert-Schmidt.

An odd polarization on V is an even polarization on V & R.
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Polarizations

Fact: Every skew-adjoint Fredholm operator D on V determines a
polarization, of parity depending on the parity of dim ker(D).
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Polarizations

Fact: Every skew-adjoint Fredholm operator D on V determines a
polarization, of parity depending on the parity of dim ker(D).

If dim ker(D) even, choose S = —S* € B, (V) with
ker(D+S) = 0.
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Polarizations

Fact: Every skew-adjoint Fredholm operator D on V determines a
polarization, of parity depending on the parity of dim ker(D). J

If dim ker(D) even, choose S = —S5* € Byn(V) with

ker(D+S) = 0.
The even polarization defined by J = | ‘ does not depend on
choice of S.
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Polarizations

Fact: Every skew-adjoint Fredholm operator D on V determines a
polarization, of parity depending on the parity of dim ker(D). J

If dim ker(D) even, choose S = —S* € B, (V) with
ker(D+S) = 0.

D+S
S

The even polarization defined by J =
choice of S.

does not depend on

|D+S]

If dim ker(D) odd, replace V with V @& R, and obtain odd
polarization.
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Step 3: The Dixmier-Douady bundle

@ V a real Hilbert space.
e CI(V) its complex Clifford algebra.

@ S; = AV, spinor module defined by J € O(V), J2 = —idy
(Hilbert space completion).

Theorem (Shale-Stinespring, 1965)

For orthogonal complex structures J, J' on V,

1 ifd~J

dim Homc (S, Sy) = {0 otherwise

Thus K(S,) = K(S) canonically if J ~ J'.
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Step 3: The Dixmier-Douady bundle

From (V, E) we constructed the family Dg of skew-adjoint
Fredholm operators on V = | J,.x, Vx = L*([0,1], V), which in
turn defines a polarization on V.

Use fiberwise representatives J, to define

A =K(S,,).

Then A =, A is a well-defined DD-bundle.
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o ker(Dg) = ENV.

@ Hence if E = V*, then ker(Dg) =0, and A =K(S,) for

_ De
J= |De|*

o IfE =V, then ker(Dg) =V, and V = V @ VL. This
explains CI(V) --» A.
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Example

For the Cartan-Dirac structure TG, E), get family

%, dom(Dg) = {f € L2([0,1],9)| f(1) = — Ad, f(0)}.

D, =
Let ASPIn .— AE.. If G is connected, then
DD(A%M) € H3(G,Z) x HY(G,Z5)

is the pull-back of the generators of H3(SO(g),Z) = Z resp.
HY(SO(g), Z2) = Z2 under Ad: G — SO(g). (See Atiyah-Segal.)

v
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In particular, if G simple and simply connected, then
DD(AP") = h"x

where x € H3(G,7Z) = 7 is the generator, and h" is the dual
Coxeter number.
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In particular, if G simple and simply connected, then
DD(AP") = h"x

where x € H3(G,7Z) = 7 is the generator, and h" is the dual
Coxeter number.

Suppose (M, w, ®) is a g-Hamiltonian G-space. Then

W5(M) = hYo*x, wi(M) = 0.
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In particular, if G simple and simply connected, then
DD(AP") = h"x

where x € H3(G,7Z) = 7 is the generator, and h" is the dual
Coxeter number.

Suppose (M, w, ®) is a g-Hamiltonian G-space. Then

W5(M) = hYo*x, wi(M) = 0.

This follows from existence of CI( TM) --» ASPI".
In particular, this result applies to the conjugacy classes of G.
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