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Dirac geometry

Dirac geometry was introduced
by T. Courant and A. Weinstein
as a common geometric
framework for
@ Poisson structures
7 € T(A2TM), [r,7] =0,
@ closed 2-forms
w € F(A2T*M), dw = 0.

v

The name comes from relation with Dirac theory of constraints. J
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Linear Dirac geometry

@ V vector space, V=V & V*,

) <V1 + a1, vo + Ozz) = <a1, V2> + <042, V1>.

Definition

E C V is Lagrangian if E = EL. The pair (V, E) is called a linear
Dirac structure.
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Linear Dirac geometry

Examples of Lagrangian subspaces:
Q@ we A3(V*) = Gr(w) = {v+nw|v e V} e Lag(V).
Q@ 7w A%(V) = Gr(r) = {tam + a|a € V*} € Lag(V).
Q@ SCV = S5+ann(S) e Lag(V).

Most general E C V given by S C V, w € A%(S*):

E={v+alveV, ,ww=als}
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Linear Dirac geometry

Let V, V'’ be vector spaces.

Definition

A morphism R:V --» V' is a Lagrangian subspaces R C V/ x V
whose projection to V'’ x V is the graph of a map A: V — V',

A morphism defines a relation x ~r x’; composition of morphisms
is composition of relations.

Definition

A morphism of Dirac structures R: (V,E) --» (V/,E') is a
morphism R: V --» V' such that

E'=RoE, Enker(R)=0.

Here ker(R) = {x € V| x ~g 0}.
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Linear Dirac geometry

Equivalently, a morphism R: V --» V' is given by a linear map
A: V — V' together with a 2-form w € A?(V*), where

vi=A(v)

vian~gV +d &
R { a=A*(d) + 1w

Hence, we will also refer to such pairs (A, w) as morphisms.
Composition of morphisms reads:

(A, w) o (Aw)=(A0Aw+ A*W).
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Linear Dirac Geometry

The conditions E' = Ro E, ker(R) N E = 0 for Dirac morphisms
mean that
Vx' € E' Ix€E: x ~g X.

This defines a map E/ — E, x' — x.
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Dirac structures on manifolds

Let M be a manifold, TM = TM & T*M.

The Courant bracket on I'(TM) is

[vi + a1, vo + ao] = [vi, vo] + Ly, a2 — diy, 1.

A Dirac structure on M is a sub-bundle E C TM such that
o E=FE",
e I(E) is closed under [-,].
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Dirac structures on manifolds

Examples of Dirac structures:
@ For w € T(A2T*M), Gr(w) is a Dirac structure < dw = 0.
@ For m € [(A2TM), Gr(x) is a Dirac structure < [r, 7] = 0.

© For S C TM a distribution, S 4 ann(S) is a Dirac structure
< S is integrable.
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Dirac structures on manifolds

More generally, one can twist by a closed 3-form 1 € Q3(M). Put
TM, =TM @& T*M.

Definition
The Courant bracket on I'(TM,) is

[vi + a1, vo + 2] = [vi, vo] + Lo, 0 — dey, a1 + Ly 00,7

Definition

A Dirac structure on M is a sub-bundle E C TM, such that
e E=FEL,
e I'(E) is closed under [-,-].
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Dirac structures on manifolds

Examples of Dirac structures in TM,;:
@ For w € T(A2T*M), Gr(w) is a Dirac structure < dw = 7.
@ For m € [(A2TM), Gr(r) is a Dirac structure
& Ln,m] = —7(n).
@ For S C TM a distribution, S + ann(S) is a Dirac structure
& S is integrable and 7| A3 S = 0.
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Dirac structures on manifolds

A map ®: M — M’ together with w € Q?(M) is called a Courant
morphism (®,w): TM, --» TM;, if

n = o*n + dw.

A Dirac morphism (®,w): (TM, E) --» (TM’, E’) is a Courant
morphism such that (d®,w) defines linear Dirac morphisms
fiberwise. )
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Application to Hamiltonian geometry

e G O g* coadjoint action
o du € Q(g*, g*) tautological 1-form

For £ € g put e(§) = &g+ + (dp, &) € [(Tg*). These satisfy

[e(€1), e(§2)] = e([€1, &2]),

hence span a Dirac structure Eg« C Tg*.

Equivalently, Eg is the graph of the Kirillov-Poisson bivector on g*.
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Application to Hamiltonian geometry

A Dirac morphism
(®,w): (TM, TM) --» (Tg", Eg+)

is a Hamiltonian g-space. That is, g acts on M, w, ® are invariant,
and

w(ége, )+ (dP,&) =0, dw=0, ker(w)=0.
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Application to g-Hamiltonian geometry

e G O G conjugation action,
@ - invariant metric on g = Lie(G),
o n=40L [0t 01 Cartan 3-form,

For ¢ € g put e(§) = &6 + %(HL + 0R) - £ € T(TG,). These satisfy

[e(&1), e(§2)] = e([€1, &2]),

hence span a Dirac structure Eg C TG,,.
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Application to g-Hamiltonian geometry

Theorem (Bursztyn-Crainic)

A g-Hamiltonian g-space is a Dirac morphism

(®,w): (TM, TM) --» (TG, Eg).

This new viewpoint is extremely useful. J
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Application to g-Hamiltonian geometry

Lemma

Let ¢ = 1pr; 0t - prsOF € Q?(G x G). Then (Multg,<) defines a
Dirac morphism

(Mu|tg,§): (TGW, Ec;) X (TGn, Eg) - (TGT,, Ec;).

Hence, given two g-Hamiltonian G-spaces (M;,w;, ®;), one can
define their fusion product by composition

(Multg, <) o ((P1,w1) X (P2, w2)).
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Application to g-Hamiltonian geometry

Use - to identify g = g*.

Lemma

Let @ € Q2(g) be the standard primitive of exp* . Then (exp, @)
defines a Dirac morphism

(exp,w): (Tg, Ey) --+ (T Gy, Eg)

over the subset of g where exp is regular.

Hence, if (M, wq, ®p) is a Hamiltonian G-space, such that exp
regular over ®o(M), then

(b, w) := (exp, @) o ($g,wp)

defines a g-Hamiltonian G-space.

v
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Application to g-Hamiltonian geometry

We will use the Dirac geometry viewpoint to explain the following
fact. Suppose G is compact and simply connected.

Fact: g-Hamiltonian G-spaces (M, w, ®) carry distinguished
invariant volume forms.

These are the analogues of the ‘Liouville forms’ of symplectic
manifolds.

We will need the concept of ‘pure spinors’.
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Pure spinors

Return to the linear algebra set-up: V=V @ V* (.,.).

e The Clifford algebra CI(V) is the unital algebra with
generators x € V and relations

X1X2 + Xox1 = (X1, %2).

@ The spinor module over CI(V) is given by

0: C(V) = End(AVT), o(v+a)p =10+ aA .
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Pure spinors

For ¢ € AV* let

N(¢) = {x € V| o(x)¢ = 0}.

For ¢ # 0, the space N(¢) C V is isotropic.

(Exercise!)

Definition (E. Cartan)
¢ € AV* is a pure spinor if N(¢) is Lagrangian.

Fact: Every E € Lag(V) is given by a pure spinor, unique up to J
scalar.
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Pure spinors

o Gr(w) = N(¢) for p = e™“.
o Gr(m) = N(¢) for ¢ = e {™A, where A € ATPV* — {0}
e S+ ann(S) = N(¢) for ¢ € AP(ann(S)) — {0}.

4

Lemma

Suppose ¢ € AN(V*) is a pure spinor. Then

PPl £ 0 = N(¢)NV =0.

(Exercise!)

Let ¢ = e . Then N(¢) NV = Gr(w) NV = ker(w) is trivial if
and only if (e~«)[ter] £ .
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Pure spinors

Lemma
Suppose (A,w): (V,E) --» (V', E') is a Dirac morphism. If
¢ € N(V')* is a pure spinor with E' N N(¢') = 0, then

¢ — e—wA*¢l

is a pure spinor with E N N(¢) = 0.

Exercise!

In particular if E = V then (e=“A*¢')l°Pl is a volume form. J
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The g-Hamiltonian volume form

Back to g-Hamiltonian G-spaces, viewed as Morita morphisms

(b, w): (TM, TM) --» (TG, Eg)

If we can find ¢ € [(G,AT*G) with E N N(¢)) =0, then
(e~ d*¢)ltorl is a volume form on M.
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The g-Hamiltonian volume form

Recall: Eg is spanned by sections
e(€) = (€8 —€F) + 3(6" +6%) -¢.

Let F; be spanned by sections

F(€) = 3e-+€F) + 2(6" — 07) &

Then TG, = Eg © Fg is a Lagrangian splitting.
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The g-Hamiltonian volume form

Suppose G is 1-connected. (Actually, it suffices that
Ad: G — SO(g) lifts to Spin(g).)

Fact: Fg = N(v) is given by a distinguished pure spinor:

i = det!/?(

14 Adg 11— Adg\ i .0
— e (4(1+Adg)0 04) €9(6)

Putting all together:

For any g-Hamiltonian G-space (M,w, ®), the top degree part of

e—wd)*w

defines an invariant volume form on M.
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The g-Hamiltonian volume form

Assuming only the existence of the invariant metric
(=non-degenerate symmetric bilinear form) -, one still gets an
invariant measure on G.
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The g-Hamiltonian volume form

This result applies in particular to conjugacy classes in G.

If G is a simply connected semi-simple Lie group, then the
conjugacy classes C C G carry distinguished volume forms. (Take -
the Killing form.)

G = SO(3) has a non-orientable conjugacy class C = RP(2).

Let G be the 2-dimensional group R~ x R (acting on R by
dilations and translations). Then G has conjugacy classes not
admitting invariant measures. Here g does not admit an invariant

metric -.
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A pure spinor defining Fg

We should still explain how ) is obtained.

Explanation: TG carries a Riemannian metric B (from inner
product on g). There is an isometric isomorphism

TG TG — TG.

= get embedding x: SO(TG) — SO(TG).

SO(TG) = G x SO(g) has distinguished section g — Ad,. We
have

Ec = k(Ad)(T*G), Fg = r(Ad)(TG).
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A pure spinor defining Fg

Fe = r(Ad)(TG).

Suppose G simply connected. Then the section x(Ad) of SO(TG)
lifts to a section k(Ad) of Spin(TG) C CI(TG).

Since TG is given by the pure spinor 1 € [(AT*G) = Q(G), the
bundle F¢ is given by a pure spinor

¥ = k(Ad).1 € T(AT*G).

One can calculate this.

Eckhard Meinrenken IGA Lecture Il: Dirac Geometry



Properties of g-Hamiltonian volume forms

Some basic properties of the g-Hamiltonian volume form T

@ Suppose (M, w, ®) is the ‘exponential’ of a Hamiltonian
G-space (M, wg, ®g). Then

M= o521,

where [y = (exp(—wp))!tPl is the Liouville form, and J is the
Jacobian determinant of exp.

@ The volume form for a fusion product of g-Hamiltonian spaces
(M, wj, ®;) is the product of the volume forms.

@ The volume form for D(G) = G x G is given by the canonical
orentation and Haar measure.
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Properties of g-Hamiltonian volume forms

o Let m = &,|I'| € D'(G) be the g-Hamiltonian
Duistermaat-Heckman measure. m is continuous, and

m|. = ¢ Vol(M//G)

where ¢ is the number of elements in a generic stabilizer.

o Recall M(Z%) = D(G)"//G. Hence we get a formula for the
symplectic volume Vol(M(X?)): Push-forward Haar measure
on G?" under the map

CD(al, bi,...,an, bh) = H a,-b,-aflbfl

and evaluate at e. The result gives Witten's volume formula
for M(Z9).
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