IGA Lecture II: Dirac Geometry

Eckhard Meinrenken

Adelaide, September 6, 2011

Dirac geometry

Dirac geometry was introduced by T. Courant and A. Weinstein as a common geometric framework for

- Poisson structures $\pi \in \Gamma(\wedge^2 TM), \ [\pi, \pi] = 0,$
- closed 2-forms $\omega \in \Gamma(\wedge^2 T^*M), \ d\omega = 0.$

The name comes from relation with Dirac theory of constraints.

- ullet V vector space, $\mathbb{V}=V\oplus V^*$,
- $\langle \mathbf{v}_1 + \alpha_1, \mathbf{v}_2 + \alpha_2 \rangle = \langle \alpha_1, \mathbf{v}_2 \rangle + \langle \alpha_2, \mathbf{v}_1 \rangle$.

Definition

 $E \subset \mathbb{V}$ is Lagrangian if $E = E^{\perp}$. The pair (\mathbb{V}, E) is called a linear Dirac structure.

Examples of Lagrangian subspaces:

Most general $E \subset \mathbb{V}$ given by $S \subset V$, $\omega \in \wedge^2(S^*)$:

$$E = \{ v + \alpha | v \in V, \ \iota_v \omega = \alpha |_S \}.$$

Let V, V' be vector spaces.

Definition

A morphism $R: \mathbb{V} \dashrightarrow \mathbb{V}'$ is a Lagrangian subspaces $R \subset \mathbb{V}' \times \overline{\mathbb{V}}$ whose projection to $V' \times V$ is the graph of a map $A: V \to V'$.

A morphism defines a relation $x \sim_R x'$; composition of morphisms is composition of relations.

Definition

A morphism of Dirac structures $R: (\mathbb{V}, E) \dashrightarrow (\mathbb{V}', E')$ is a morphism $R: \mathbb{V} \dashrightarrow \mathbb{V}'$ such that

$$E' = R \circ E, \quad E \cap \ker(R) = 0.$$

Here $\ker(R) = \{x \in \mathbb{V} | x \sim_R 0\}.$

Equivalently, a morphism $R: \mathbb{V} \dashrightarrow \mathbb{V}'$ is given by a linear map $A: V \to V'$ together with a 2-form $\omega \in \wedge^2(V^*)$, where

$$v + \alpha \sim_R v' + \alpha' \Leftrightarrow \begin{cases} v' = A(v) \\ \alpha = A^*(\alpha') + \iota_v \omega \end{cases}$$

Hence, we will also refer to such pairs (A, ω) as morphisms. Composition of morphisms reads:

$$(A', \omega') \circ (A, \omega) = (A' \circ A, \omega + A^*\omega').$$

The conditions $E' = R \circ E$, $\ker(R) \cap E = 0$ for Dirac morphisms mean that

$$\forall x' \in E' \ \exists^! x \in E : x \sim_R x'.$$

This defines a map $E' \to E$, $x' \mapsto x$.

Let M be a manifold, $\mathbb{T}M = TM \oplus T^*M$.

Definition

The Courant bracket on $\Gamma(\mathbb{T}M)$ is

$$[\![v_1 + \alpha_1, v_2 + \alpha_2]\!] = [v_1, v_2] + \mathcal{L}_{v_1}\alpha_2 - d\iota_{v_2}\alpha_1.$$

Definition

A Dirac structure on M is a sub-bundle $E \subseteq \mathbb{T}M$ such that

- \bullet $E=E^{\perp}$,
- $\Gamma(E)$ is closed under $[\cdot, \cdot]$.

Examples of Dirac structures:

- For $\omega \in \Gamma(\wedge^2 T^*M)$, $Gr(\omega)$ is a Dirac structure $\Leftrightarrow d\omega = 0$.
- ② For $\pi \in \Gamma(\wedge^2 TM)$, $Gr(\pi)$ is a Dirac structure $\Leftrightarrow [\pi, \pi] = 0$.
- **③** For $S \subset TM$ a distribution, $S + \operatorname{ann}(S)$ is a Dirac structure $\Leftrightarrow S$ is integrable.

More generally, one can twist by a closed 3-form $\eta \in \Omega^3(M)$. Put $\mathbb{T}M_{\eta} = TM \oplus T^*M$.

Definition

The Courant bracket on $\Gamma(\mathbb{T}M_{\eta})$ is

$$[\![v_1 + \alpha_1, v_2 + \alpha_2]\!] = [v_1, v_2] + \mathcal{L}_{v_1} \alpha_2 - d\iota_{v_2} \alpha_1 + \iota_{v_1} \iota_{v_2} \eta.$$

Definition

A Dirac structure on M is a sub-bundle $E \subseteq \mathbb{T}M_{\eta}$ such that

- \bullet $E=E^{\perp}$,
- $\Gamma(E)$ is closed under $[\cdot, \cdot]$.

Examples of Dirac structures in $\mathbb{T}M_{\eta}$:

- For $\omega \in \Gamma(\wedge^2 T^*M)$, $Gr(\omega)$ is a Dirac structure $\Leftrightarrow d\omega = \eta$.
- ② For $\pi \in \Gamma(\wedge^2 TM)$, $Gr(\pi)$ is a Dirac structure $\Leftrightarrow \frac{1}{2}[\pi, \pi] = -\pi^{\sharp}(\eta)$.
- **③** For $S \subset TM$ a distribution, S + ann(S) is a Dirac structure $\Leftrightarrow S$ is integrable and η | Λ³ S = 0.

Definition

A map $\Phi \colon M \to M'$ together with $\omega \in \Omega^2(M)$ is called a Courant morphism $(\Phi, \omega) \colon \mathbb{T} M_{\eta} \dashrightarrow \mathbb{T} M'_{\eta'}$ if

$$\eta = \Phi^* \eta' + \mathsf{d}\omega.$$

Definition

A Dirac morphism (Φ, ω) : $(\mathbb{T}M, E) \dashrightarrow (\mathbb{T}M', E')$ is a Courant morphism such that $(d\Phi, \omega)$ defines linear Dirac morphisms fiberwise.

- $G \circlearrowright \mathfrak{g}^*$ coadjoint action
- $\mathrm{d}\mu \in \Omega^1(\mathfrak{g}^*,\mathfrak{g}^*)$ tautological 1-form

For
$$\xi\in\mathfrak{g}$$
 put $e(\xi)=\xi_{\mathfrak{g}^*}+\langle\mathsf{d}\mu,\xi\rangle\in\Gamma(\mathbb{T}\mathfrak{g}^*).$ These satisfy
$$[\![e(\xi_1),e(\xi_2)]\!]=e([\xi_1,\xi_2]),$$

hence span a Dirac structure $E_{\mathfrak{g}^*} \subset \mathbb{T}\mathfrak{g}^*$.

Remark

Equivalently, $E_{\mathfrak{g}^*}$ is the graph of the Kirillov-Poisson bivector on \mathfrak{g}^* .

A Dirac morphism

$$(\Phi, \omega)$$
: $(\mathbb{T}M, TM) \longrightarrow (\mathbb{T}\mathfrak{g}^*, E_{\mathfrak{g}^*})$

is a Hamiltonian g-space. That is, $\mathfrak g$ acts on $M,\,\omega,\Phi$ are invariant, and

$$\omega(\xi_{\mathfrak{q}^*},\cdot) + \langle d\Phi, \xi \rangle = 0, \quad d\omega = 0, \quad \ker(\omega) = 0.$$

- G G conjugation action,
- · invariant metric on $\mathfrak{g} = Lie(G)$,
- $\eta = \frac{1}{12} \theta^L \cdot [\theta^L, \theta^L]$ Cartan 3-form,

For
$$\xi \in \mathfrak{g}$$
 put $e(\xi) = \xi_G + \frac{1}{2}(\theta^L + \theta^R) \cdot \xi \in \Gamma(\mathbb{T}G_\eta)$. These satisfy
$$\llbracket e(\xi_1), e(\xi_2) \rrbracket = e([\xi_1, \xi_2]),$$

hence span a Dirac structure $E_G \subset \mathbb{T} G_\eta$.

Theorem (Bursztyn-Crainic)

A q-Hamiltonian g-space is a Dirac morphism

$$(\Phi,\omega)$$
: $(\mathbb{T}M,TM) \longrightarrow (\mathbb{T}G_{\eta},E_G)$.

This new viewpoint is extremely useful.

Lemma

Let $\varsigma = \frac{1}{2} \operatorname{pr}_1^* \theta^L \cdot \operatorname{pr}_2^* \theta^R \in \Omega^2(G \times G)$. Then $(\operatorname{Mult}_G, \varsigma)$ defines a Dirac morphism

$$(\mathsf{Mult}_G,\varsigma)\colon (\mathbb{T}G_\eta,E_G)\times (\mathbb{T}G_\eta,E_G)\dashrightarrow (\mathbb{T}G_\eta,E_G).$$

Hence, given two q-Hamiltonian G-spaces (M_i, ω_i, Φ_i) , one can define their fusion product by composition

$$(\mathsf{Mult}_G,\varsigma)\circ ((\Phi_1,\omega_1)\times (\Phi_2,\omega_2)).$$

Use \cdot to identify $\mathfrak{g} \cong \mathfrak{g}^*$.

Lemma

Let $\varpi \in \Omega^2(\mathfrak{g})$ be the standard primitive of $\exp^* \eta$. Then (\exp, ϖ) defines a Dirac morphism

$$(\exp, \varpi) \colon (\mathbb{T}\mathfrak{g}, E_{\mathfrak{g}}) \dashrightarrow (\mathbb{T}G_{\eta}, E_{G})$$

over the subset of g where exp is regular.

Hence, if (M, ω_0, Φ_0) is a Hamiltonian *G*-space, such that exp regular over $\Phi_0(M)$, then

$$(\Phi,\omega):=(\exp,\varpi)\circ(\Phi_0,\omega_0)$$

defines a q-Hamiltonian G-space.

We will use the Dirac geometry viewpoint to explain the following fact. Suppose G is compact and simply connected.

Fact: q-Hamiltonian G-spaces (M, ω, Φ) carry distinguished invariant volume forms.

These are the analogues of the 'Liouville forms' of symplectic manifolds.

We will need the concept of 'pure spinors'.

Return to the linear algebra set-up: $\mathbb{V} = V \oplus V^*, \ \langle \cdot, \cdot \rangle$.

Definition

• The Clifford algebra \mathbb{C} I(\mathbb{V}) is the unital algebra with generators $x \in \mathbb{V}$ and relations

$$x_1x_2+x_2x_1=\langle x_1,x_2\rangle.$$

• The spinor module over $\mathbb{C} I(\mathbb{V})$ is given by

$$\varrho \colon \mathbb{C} \mathsf{I}(\mathbb{V}) \to \mathsf{End}(\wedge V^*), \quad \varrho(v + \alpha)\phi = \iota_v \phi + \alpha \wedge \phi.$$

For $\phi \in \wedge V^*$ let

$$N(\phi) = \{x \in \mathbb{V} | \varrho(x)\phi = 0\}.$$

Lemma

For $\phi \neq 0$, the space $N(\phi) \subseteq \mathbb{V}$ is isotropic.

(Exercise!)

Definition (E. Cartan)

 $\phi \in \wedge V^*$ is a pure spinor if $N(\phi)$ is Lagrangian.

Fact: Every $E \in Lag(V)$ is given by a pure spinor, unique up to scalar.

Example

- $Gr(\omega) = N(\phi)$ for $\phi = e^{-\omega}$.
- $Gr(\pi) = N(\phi)$ for $\phi = e^{-\iota(\pi)}\Lambda$, where $\Lambda \in \wedge^{top}V^* \{0\}$.
- $S + \operatorname{ann}(S) = N(\phi)$ for $\phi \in \wedge^{top}(\operatorname{ann}(S)) \{0\}$.

Lemma

Suppose $\phi \in \wedge(V^*)$ is a pure spinor. Then

$$\phi^{[top]} \neq 0 \Leftrightarrow N(\phi) \cap V = 0.$$

(Exercise!)

Example

Let $\phi = e^{-\omega}$. Then $N(\phi) \cap V = \text{Gr}(\omega) \cap V = \text{ker}(\omega)$ is trivial if and only if $(e^{-\omega})^{[top]} \neq 0$.

Lemma

Suppose (A, ω) : $(\mathbb{V}, E) \dashrightarrow (\mathbb{V}', E')$ is a Dirac morphism. If $\phi' \in \wedge (V')^*$ is a pure spinor with $E' \cap N(\phi') = 0$, then

$$\phi = e^{-\omega} A^* \phi'$$

is a pure spinor with $E \cap N(\phi) = 0$.

Exercise!

In particular if E = V then $(e^{-\omega}A^*\phi')^{[top]}$ is a volume form.

Back to q-Hamiltonian G-spaces, viewed as Morita morphisms

$$(\Phi,\omega)$$
: $(\mathbb{T}M,TM) \dashrightarrow (\mathbb{T}G_{\eta},E_G)$

If we can find $\psi \in \Gamma(G, \wedge T^*G)$ with $E \cap N(\psi) = 0$, then $(e^{-\omega}\Phi^*\psi)^{[\text{top}]}$ is a volume form on M.

Recall: E_G is spanned by sections

$$e(\xi) = (\xi^L - \xi^R) + \frac{1}{2}(\theta^L + \theta^R) \cdot \xi.$$

Let F_G be spanned by sections

$$f(\xi) = \frac{1}{2}(\xi^{L} + \xi^{R}) + \frac{1}{4}(\theta^{L} - \theta^{R}) \cdot \xi.$$

Then $\mathbb{T}G_{\eta} = E_G \oplus F_G$ is a Lagrangian splitting.

Suppose G is 1-connected. (Actually, it suffices that Ad: $G \to SO(\mathfrak{g})$ lifts to $Spin(\mathfrak{g})$.)

Fact: $F_G = N(\psi)$ is given by a distinguished pure spinor:

$$\psi = \mathsf{det}^{1/2}\big(\frac{1 + \mathsf{Ad}_{g}}{2}\big) \exp\Big(\frac{1}{4}\big(\frac{1 - \mathsf{Ad}_{g}}{1 + \mathsf{Ad}_{g}}\big)\theta^{L} \cdot \theta^{L}\Big) \in \Omega(\mathsf{G}).$$

Putting all together:

Theorem

For any q-Hamiltonian G-space (M, ω, Φ) , the top degree part of

$$e^{-\omega}\Phi^*\psi$$

defines an invariant volume form on M.

Remark

Assuming only the existence of the invariant metric $(=non-degenerate\ symmetric\ bilinear\ form)\cdot$, one still gets an invariant measure on G.

This result applies in particular to conjugacy classes in G.

Example

If G is a simply connected semi-simple Lie group, then the conjugacy classes $\mathcal{C} \subseteq G$ carry distinguished volume forms. (Take · the Killing form.)

Example

G = SO(3) has a non-orientable conjugacy class $C \cong \mathbb{R}P(2)$.

Example

Let G be the 2-dimensional group $\mathbb{R}_{>0}\ltimes\mathbb{R}$ (acting on \mathbb{R} by dilations and translations). Then G has conjugacy classes not admitting invariant measures. Here \mathfrak{g} does not admit an invariant metric \cdot .

A pure spinor defining F_G

We should still explain how ψ is obtained.

Explanation: TG carries a Riemannian metric B (from inner product on \mathfrak{g}). There is an isometric isomorphism

$$TG \oplus \overline{TG} \to \mathbb{T}G$$
.

 \Rightarrow get embedding $\kappa \colon SO(TG) \hookrightarrow SO(\mathbb{T}G)$.

 $SO(TG) \cong G \times SO(\mathfrak{g})$ has distinguished section $g \mapsto Ad_g$. We have

$$E_G = \kappa(Ad)(T^*G), \quad F_G = \kappa(Ad)(TG).$$

A pure spinor defining F_G

$$F_G = \kappa(Ad)(TG).$$

Suppose G simply connected. Then the section $\kappa(\mathsf{Ad})$ of $SO(\mathbb{T}G)$ lifts to a section $\widetilde{\kappa(\mathsf{Ad})}$ of $\mathsf{Spin}(\mathbb{T}G) \subset \mathbb{C}\operatorname{I}(\mathbb{T}G)$.

Since TG is given by the pure spinor $1 \in \Gamma(\land T^*G) = \Omega(G)$, the bundle F_G is given by a pure spinor

$$\psi = \kappa(\mathsf{Ad}).1 \in \Gamma(\wedge T^*G).$$

One can calculate this.

Properties of q-Hamiltonian volume forms

Some basic properties of the q-Hamiltonian volume form Γ :

• Suppose (M, ω, Φ) is the 'exponential' of a Hamiltonian G-space (M, ω_0, Φ_0) . Then

$$\Gamma = \Phi_0^* J^{1/2} \Gamma_0$$

where $\Gamma_0 = (\exp(-\omega_0))^{[top]}$ is the Liouville form, and J is the Jacobian determinant of exp.

- The volume form for a fusion product of q-Hamiltonian spaces (M_i, ω_i, Φ_i) is the product of the volume forms.
- The volume form for $D(G) = G \times G$ is given by the canonical orentation and Haar measure.

Properties of q-Hamiltonian volume forms

• Let $\mathfrak{m}=\Phi_*|\Gamma|\in\mathcal{D}'(G)$ be the q-Hamiltonian Duistermaat-Heckman measure. \mathfrak{m} is continuous, and

$$\mathfrak{m}|_e = c \operatorname{Vol}(M/\!\!/ G)$$

where c is the number of elements in a generic stabilizer.

• Recall $\mathcal{M}(\Sigma_h^0) = D(G)^h /\!\!/ G$. Hence we get a formula for the symplectic volume $\operatorname{Vol}(\mathcal{M}(\Sigma_h^0))$: Push-forward Haar measure on G^{2h} under the map

$$\Phi(a_1, b_1, \dots, a_h, b_h) = \prod a_i b_i a_i^{-1} b_i^{-1}$$

and evaluate at e. The result gives Witten's volume formula for $\mathcal{M}(\Sigma_h^0)$.