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Homogeneous Crystals Lattice Models

Part 1: Homogeneous Disordered Crystals
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Homogeneous Crystals Lattice Models

Homogeneous Lattice Systems

Let:

1 H = CN ⊗ `(Zd) be the physical Hilbert space

2 H ∈ B(H) a Hamiltonian describing an infinit sample

Definition (Bellissard, 1986)

Consider the set of all translates of H:

Ω = {TaHT
∗
a , a ∈ Zd} ⊂ B(H) .

The condensed matter system described by H is homogeneous if Ω has a compact
closure in the strong topology of B(H).
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Homogeneous Crystals Lattice Models

Example: Thermally disordered crystal

1200$K$ 1500$K$

300$K$ 600$K$ 900$K$

1800$K$

Quantum Molecular Dynamics of 1000 atoms Si crystal simulated by Thomas Kühne.
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Homogeneous Crystals Lattice Models

2400$K$
2700$K$ 3000$K$

Quantum Molecular Dynamics of 1000 atoms Si crystal simulated by Thomas Kühne.
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Homogeneous Crystals Lattice Models

1 The configurations are encoded as (for smaller temperatures):

ω = {Rαx }α=1,Na

x∈Zd ∈ Ω =
∏
x∈Zd

Na∏
α=1

Ωα
0 =

∏
x∈Zd

Ω0 ,

(Na = # of atoms in the primitive cell)

2 The translations act by shifting the configuration of atoms:

Zd 3 q → τyω = τy{Rαx } = {Rαx−y}.

3 Gibbs probability measure:

dP(ω) = Z−1
V e−βVV (ω)

∏
x∈V⊂Zd

Na∏
α=1

dωαx

∣∣∣∣∣∣
V→∞

,

VV = atomic potential, β = 1
kT .
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Homogeneous Crystals Lattice Models

Conjecture: (D. Ruelle, 1968)

For a pure crystalline phase, the Gibbs measure is invariant and ergodic
relative to the translations.

Conclusion:

A homogeneous crystalline phase is defined by a measure preserving
ergodic dynamical system:

(Ω,Zd , τ, dP)

and the dynamics of the electrons by a covariant family:

{Hω}ω∈Ω , TaHωT
∗
a = Hτaω .
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Homogeneous Crystals Lattice Models

Proposition:

The bounded covariant Hamiltonians on Cd ⊗ `2(Zd) take the following
form:

Hω =
∑
q∈Zd

∑
x∈Zd

wq(τxω)⊗ |x〉〈x |Tq

When uniform magnetic fields are present, then the ordinary translations
Tq are replaced by the magnetic translations.

The spectrum of Hω can be:

1 Anderson localized ⇒ direct transport coefficients vanish at T = 0

2 Extended ⇒ finite direct transport coefficients at T = 0
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Homogeneous Crystals Lattice Models

Example: Spectra of Homogeneous Hamiltonians
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Classification of Homogeneous Crystals Periodic Table of Topological Insulators and Superconductors

Part 2: Classification of Homogeneous
Crystals
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Classification of Homogeneous Crystals Periodic Table of Topological Insulators and Superconductors

Classification of Homogeneous Crystalline Systems
A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in three
spatial dimensions, Phys. Rev. B 78, 195125 (2008).
A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial
Conference) AIP Conference Proceedings 1134, 22-30 (2009).
S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

j TRS PHS CHS CAZ 0, 8 1 2 3 4 5 6 7

0 0 0 0 A Z Z Z Z
1 0 0 1 AIII Z Z Z Z
0 +1 0 0 AI Z 2Z Z2 Z2

1 +1 +1 1 BDI Z2 Z 2Z Z2

2 0 +1 0 D Z2 Z2 Z 2Z
3 −1 +1 1 DIII Z2 Z2 Z 2Z
4 −1 0 0 AII 2Z Z2 Z2 Z
5 −1 −1 1 CII 2Z Z2 Z2 Z
6 0 −1 0 C 2Z Z2 Z2 Z
7 +1 −1 1 CI 2Z Z2 Z2 Z

- each n ∈ Z or Z2 defines a distinct macroscopic insulating phase: σxx = 0.
- the phases are separated by a bulk Anderson transition: σxx > 0

- σ‖ > 0 along any boundary cut into the crystals.
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Classification of Homogeneous Crystals Index Theorems for Bulk

The Index Theorem for Bulk Projections (d = even)

Let d be even and let Pω be a covariant projection such that:∫
Ω
dP(ω)

〈
0
∣∣∣∣∣[X ,Pω]

∣∣d ∣∣∣0〉 <∞
Let Γ1, . . . , Γ2 be irreducible rep of Cld . Then, P-almost surely

Fω = Pω

(
X · Γ
|X |

)
+−

Pω ∈ Fredholm class

and

IndFω = Λd

∑
ρ∈Sd

(−1)ρ
∫

Ω
dPω

〈
0
∣∣∣Pω d∏

i=1

ı
[
Xρi ,Pω

]∣∣∣0〉

J. Bellissard, A. van Elst, H. Schulz-Baldes, The non-commutative geometry of the quantum Hall effect, J. Math. Phys. 35,
5373-5451 (1994).

E. P., B. Leung, J. Bellissard, The non-commutative n-th Chern number (n ≥ 1), J. Phys. A: Math. Theor. 46, 485202 (2013).
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Classification of Homogeneous Crystals Index Theorems for Bulk

The Index Theorem for Bulk Unitaries (d = odd)

Let d be odd and let Uω be a covariant unitary such that:∫
Ω
dP(ω)

〈
0
∣∣∣∣∣[X ,Uω]

∣∣d ∣∣∣0〉 <∞
Let E+ be the spectral projection onto the positive spectrum of X · Γ.
Then, P-almost surely

Fω = E+UωE+ ∈ Fredholm class

and

IndFω = Λd

∑
ρ∈Sd

(−1)ρ
∫

Ω
dP(ω)

〈
0
∣∣∣ d∏
i=1

ıU∗ω
[
Xρi ,Uω

]∣∣∣0〉

E. P. and H. Schulz-Baldes, Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Funct.

Anal. 271, 1150-1176 (2016).
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The Algebraic Formulation Algebra of Physical Observables

Part 3: The algebraic framework
of Jean Bellissard
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The Algebraic Formulation Algebra of Physical Observables

The Algebra of Bulk Physical Observables Ad

Definition (φij = magnetic flux through the facets of unit cell)

The universal C∗-algebra

Ad = C∗
(
CN(Ω), u1, · · · , ud

)
, CN(Ω) = C (Ω,MN×N)

generated by the following commutation relations:

uiu
∗
i = u∗i ui = 1, i = 1, . . . , d

ui uj = e iφijuj ui , i , j = 1, . . . , d

}
non − commutative torus

f uj = uj (f ◦ τj) , ∀ f ∈ CN(Ω) , j = 1, . . . , d .

A generic element takes the form

a =
∑
x∈Zd

ax ux , ax ∈ CN(Ω) , ux = ux1
1 · · · uxdd .
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The Algebraic Formulation Algebra of Physical Observables

Canonical Representation on CN ⊗ `2(Zd)

Proposition

πω(uq) = Tq , q ∈ Zd ,

πω(f ) =
∑
x∈Zd

f (τxω)⊗ |x〉〈x |, ∀ f ∈ CN(Ω),

defines a family {πω}ω∈Ω of P-almost sure faithful representations.

For generic elements

Ad 3 a =
∑
q∈Zd

aq uq −→ πω(a) =
∑

x,q∈Zd

aq(τxω)⊗ |x〉〈x |Tq.

All homogeneous lattice models can be generated from Ad !
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The Algebraic Formulation Non-commutative calculus

Fourier Calculus for Algebra of Observables

Defined by the group of continuous ∗-automorphisms ρk induced by the
U(1) twists

uj → eıkjuj , kj ∈ [0, 2π], j = 1, . . . , d .

The Fourier coefficients of a ∈ Ad

Φx(a) =

∫
Td

dk e−ı〈x|k〉ρk(au∗x ) ∈ CN(Ω), x ∈ Zd .

For a generic element a ∈ Ad , the Cesàro sums converge to a

a(n) =
∑

x∈[−n,...,n]d

d∏
j=1

(
1− |xj |

n + 1

)
Φx(a) ux
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The Algebraic Formulation Non-commutative calculus

Non-Commutative Calculus

Defined over Ad through the Fourier calculus:

Derivation:

Φx(∂ja) = −ıxjΦx(a), j = 1, d

For a generic element

a =
∑
x∈Zd

axux → ∂ja = −ı
∑
x∈Zd

xj ax ux

Integration:

T(a) =

∫
Ω

P(dω) tr
{

Φ0(a)
}
, T(a) =

∫
Ω

dP(ω) tr{a0(ω)}

The trace T over Ad is continuous, normalized and T(∂ja) = 0.
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The Algebraic Formulation Non-commutative calculus

I Chern Numbers (Schulz-Baldes et al, JMP 1994, EP et al 2013, EP et al 2014):

Ceven(p) = Λd

∑
σ∈Sd

(−1)σT
(
p

d∏
i=1

∂σip
)
, Codd(u) = Λd

∑
σ∈Sd

(−1)σT
( d∏
i=1

u∗∂σiu
)

I Finite-Temperature Kubo-formula (Schulz-Baldes & Bellissard in 1990’s):

σij = −T
(
(∂ih) ∗ (Γ + Lh)−1∂jΦFD(h)

)
.

I Electric polarization (Schulz-Baldes and Teufel in Comm. Math. Phys. 2012):

∆P =

∫ T

0

dt T (p(t)[∂tp(t),∇p(t)])

I Orbital magnetization (Schulz-Baldes and Teufel in Comm. Math. Phys. 2012):

Mj =
i

2
T (|h − εF |[∂j+1p, ∂j+2p])

I Magneto-Electric Response in d = 3 (Leung and EP in J. Phys. A 2013):

∆α = 1
2

∫
dt

∑
σ∈S4

(−1)σT
(
p

4∏
i=1

∂σip
)
, (4-th direction = time)
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The Approximation Program

Part 4: The Approximation Program
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The Approximation Program Useful Algebraic Structures

The smooth sub-algebra

Let
C n(Ad) = Span{a ∈ Ad | ρλ(a) = n-times differentiable}

Then
A∞d = C∞(Ad) =

⋂
n≥1

C n(Ad) (smooth algebra)

endowed with the topology induced by the semi-norms:

‖a‖α = ‖∂αa‖ , ∂α = ∂α1
1 · · · ∂αd

d , α = (α1, . . . αd)

Proposition:

A∞d is a dense Fréchet sub-algebra of Ad , stable under the functional calculus
with smooth functions. If a ∈ A∞d , then its Fourier coefficients decay fast:

xα‖ax‖CN (Ω) ≤ ‖∂αa‖ ≤ ∞, xα = xα1 . . . xαd .
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The Approximation Program Useful Algebraic Structures

The Sobolev spaces Wr ,p(A,T0)

Defined as the closure of A∞d under the norms:

‖a‖r ,p =
∑
x∈Zd

(
1 + |x |

)r (∫
dP(ω)|ax(ω)|p

) 1
p

, r ∈ N , p ∈ N+ . (1)

The Sobolev algebra Ā∞d

Defined as the Frechét algebra defined by the closure of A∞d in the topology
defined by the norms ‖ ‖r ,p, r ∈ N, p ∈ N+.

Proposition:

Let h ∈ Ad be a self-adjoint element with a mobility gap ∆. Then, G (h) ∈ Ā∞d
for any Borel function G with support in a mobility gap.
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The Approximation Program The Periodic Approximating Algebra

The Periodic Approximating Algebra Ãd

Definition:

Ω̃ = {ω ∈ Ω | τ 2L+1
j ω = ω}, τ̃a = τa|Ω̃ .

Then:
Ãd = C∗

(
CN(Ω̃), u1, · · · , ud

)
,

with same commutation relations as before. Let q̃ : Ω→ Ω̃ be the canonical map
and define d P̃ = q̃∗ dP. Then the non-commutative manifold (Ãd , ∂̃, T̃) can be
defined as before.

Proposition:

p̃ : Ad → Ãd ,
∑
x∈Zd

axux →
∑
x∈Zd

ãxux , ãx = ax |Ω̃ . (2)

is an epimorphism of C∗-algebras.
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The Approximation Program The Finite Volume Approximating Algebra

Finite-Volume Disorder Configurations

0 -
(
(2L + 1)Z

)d i- Zd
ev-
�

s
Ẑd =

(
Z
/

(2L + 1)Z
)d - 0 .

1 x̂ denotes the class in Ẑd of x ∈ Zd

2 Splitting map s is fixed to s(x̂) = y , y ∈ VL such that ŷ = x̂ .

Definition: The space of disorder configurations at finite volume

Ω̂ =
∏
x̂∈Ẑd

Ω0, τ̂y (ω̂) = τ̂y{ω̂x̂}x̂∈Ẑd = {ω̂x̂−y}x̂∈Ẑd .

Proposition:

ω̃ = {ω̃x}x∈Zd → q̂ω̃ ∈ Ω̂, (q̂ω̃)x̂ = ω̃s(x̂) , d P̂ = q̂∗ d̃P

defines an isomorphisms of dynamical systems

(Ω̃, τ̃ ,Zd , d P̃) ' (Ω̂, τ̂ ,Zd , d P̂) .
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The Approximation Program The Finite Volume Approximating Algebra

The Finite Approximating Algebra

Definition:

Âd = C∗
(
CN(Ω̂), û1, · · · , ûd

)
,

with same commutation relations but the additional constraint:

(ũj)
2L+1 = 1, j = 1, . . . , d .

The algebra is well defined only if φij = 2π
2L+1 × integer, since(

ûi ûj û
∗
i

)2L+1
= eı(2L+1)φij (ûj)

2L+1.

Proposition:

p̂ : Ãd → Âd , p̂(uj) = ûj , p̂(f̃ ) = f̃ ◦ q̂−1 ,

is a ∗-epimorphism of C∗-algebras.
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The Approximation Program The Finite Volume Approximating Algebra

Approximate Non-Commutative Calculus:

For generic â =
∑

x∈VL
âx ûx :

∂̂j â = −ı
∑
x∈VL

xj âx ûx , T̂(â) =

∫
Ω̂

d P̂(ω̂) â0(ω̂).

Under the canonical representations:

π̂ω̂(∂̂j â) =
∑

λ2L+1=1

cλ λ
X̂ π̂ω̂(â)λ−X̂ , cλ =

{
λL

1−λ , λ 6= 1,

0, λ = 1.

T̂(â) =

∫
Ω̂

d P̂(ω̂) 〈0|π̂ω̂(â)|0〉 =
1

|VL|
∑
x∈VL

∫
Ω̂

d P̂(ω̃) 〈x |π̂ω̂(â)|x〉 .

At this point we found the optimal replacement:

ı[Aω,Xj ]→
∑

λ2L+1=1

cλ λ
X̂ Âω̂λ

−X̂ , Aω = πω(a), Âω̂ = π̂ω̂
(
p̂ ◦ p̃(a)

)
This is the foundation for our finite-volume algorithm.
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The Approximation Program The Core of Approximation

The Approximation Scheme in a Nutshell

Take:

Ln+1 = cLn +
c

2
− 1

2
→ VLn+1 = cVLn (3)

Then we have the projective tower of C∗-algebras:

C (Ω̃L0 ) ��
p̃0

C̃ (Ω̃L1 ) ��
p̃1

. . . ��
p̃k−1

C (Ω̃Ln) . . . , lim←−C (Ω̃Ln) = C (Ω) .

and for Û
(L)
d = C∗(û1, . . . , ûd):

Û
(L0)
d
��p̂0

Û
(L1)
d
��p̂1

. . . ��
p̂k−1

Û
(Ln)
d . . . , lim←−U

(Ln)
d = C∗(u1, . . . , ud) .

Then the approximating scheme is summarized by:

Â
(L0)
d
��p̃0

Â
(L1)
d
��p̃1

. . . ��
p̃k−1

Â
(Ln)
d . . . , Ad = lim←− Âd

(together with the canonical approximate differential calculus)
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The Approximation Program The Core of Approximation

Convergence to TD-Limit: Smooth Correlations

Assumptions:

a1. The Hamiltonian h belongs to the smooth algebra A∞d .

a2. For any K ∈ N, the Fourier coefficients of the Hamiltonian satisfy:

‖hq(ω)− hq(ω′)‖ ≤ AK

(1 + |VM |)K
, 0 < AK <∞ , (4)

whenever ωx = ω′x for x ∈ VM , M ∈ N.

Theorem:

Let h ∈ Ad satisfying a1-a2. Define ĥ ∈ Âd as ĥ = (p̂ ◦ p̃)(h). Then, for any
K ∈ N, K ≥ 2, there exists the finite positive constant AK such that:∣∣∣T(∂α1G1(h) . . . ∂αnGn(h)

)
− T̂

(
∂̂α1G1(ĥ) . . . ∂̂αnGn(ĥ)

)∣∣∣ ≤ AK

(1 + |VL|)K
,

where Gi ’s are smooth functions on the spectrum of h.
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The Approximation Program The Core of Approximation

Convergence to TD-Limit: Non-Smooth Correlations

c1. The Hamiltonian h ∈ Ad is of finite range and takes the linearized form:

h =
∑ (

wq + λqω0

)
uq .

c2. The Hamiltonian has a mobility gap ∆:∫
Ω

dP(ω)
∥∥(h − z)−1

x (ω)
∥∥s ≤ As(δ)e−γs (δ)|x| , s ∈ (0, 1), δ > 0 ,

uniformly for all z ∈ C \ σ(h) with dist(z , σ(h) \∆) ≥ δ.

Theorem:

Let h ∈ Ad satisfying c1-c2. Define ĥ ∈ Âd as ĥ = (p̂ ◦ p̃)(h). Then, for any
K ∈ N, there exists the finite positive constant AK such that:∣∣∣T(∂α1G1(h) . . . ∂αnGn(h)

)
− T̂

(
∂̂α1G1(ĥ) . . . ∂̂αnGn(ĥ)

)∣∣∣ ≤ AK

(1 + |VL|)K
,

where Gi ’s are Borel functions that are smooth away from the mobility gap of h.
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The Approximation Program Example: Disordered Haldane model

The Haldane Model (generator of class A in 2D)

Disordered Haldane model (αx = ±1)

Hω =
∑
〈x,y〉

|x〉〈y |+ 0.6ı
∑
〈〈x,y〉〉

αx

(
|x〉〈y | − |y〉〈x |

)
+ λ

∑
x

ωx |x〉〈x |.

(b) (c) (d)

(e) (f) (g) (h)

(a)

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0.178

0.178

0.178

0.178

0.178

0.178

0.178

0.178
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The Approximation Program Example: Disordered Haldane model

40 x 40

EF EF

EF

60 x 60

EF

80 x 80 100 x 100

C
he

rn
 N

um
be

r
C

he
rn

 N
um

be
r

C
he

rn
 N

um
be

r
C

he
rn

 N
um

be
r

Thursday, September 19, 2013

Corresponds to the first row - second column case of the previous case. Note the absence of a spectral gap!
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The Approximation Program Example: Disordered Haldane model

C
he

rn
 N

um
be

r

C
he

rn
 N

um
be

r

EF EF
The Chern lines overlap almost perfectly after a rescaling of the energy axis

E → Ec + (E − Ec) ∗ (L/L0)ν , Λ ∼ A

|E − Ec |ν

(ν = 2.6, in line with the most recent estimates)
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The Approximation Program Example: Disordered Haldane model

Table: Numerical values for average Chern numbers

Energy 40 × 40 60 × 60 80 × 80 100 × 100
-2.0000000000000000 0.0293885304649968 0.0183147848896676 0.0134785966919230 0.0055726403061233
-1.8999999999999999 0.0442301583027775 0.0274502505545331 0.0200229343621875 0.0112501012411246
-1.8000000000000000 0.0563736772645283 0.0416811880195335 0.0285382576963500 0.0259995275657507
-1.7000000000000000 0.0868202901241971 0.0612803850743208 0.0506852078002088 0.0377798251819264
-1.6000000000000001 0.1121154018269069 0.0905166860071905 0.0781754600177580 0.0554182299457663
-1.5000000000000000 0.1617580454580226 0.1291516191502659 0.1133966598848624 0.0977984662347778
-1.3999999999999999 0.2093536896403097 0.1883311262238442 0.1733092018533850 0.1386844139850113
-1.3000000000000000 0.2687556358733589 0.2575144956897765 0.2146703753513447 0.2040079233029510
-1.2000000000000000 0.3565352143319771 0.3333569482253110 0.3319133571108642 0.3066419928551302
-1.1000000000000001 0.4646789224167249 0.4444784219466996 0.4310440221933989 0.4427699238861748
-1.0000000000000000 0.5479958396159215 0.5561471440680733 0.5442615536532044 0.5738596277941682
-0.9000000000000000 0.6624275864985472 0.6798953821199148 0.7086514094234754 0.7228749266484203
-0.8000000000000000 0.7742005453064691 0.8124137607528051 0.8270271100278364 0.8487923693232788
-0.7000000000000000 0.8672349391630054 0.9079791895178040 0.9301639459675241 0.9432234611493278
-0.6000000000000000 0.9392873717233425 0.9636994770114942 0.9802652381114992 0.9872940741308633
-0.5000000000000000 0.9784417158133359 0.9935074963179980 0.9974987656403326 0.9988846769813913
-0.4000000000000000 0.9958865415757685 0.9992024708366942 0.9998527876642247 0.9999656328302596
-0.3000000000000000 0.9998184404341747 0.9999824660477071 0.9999988087144891 0.9999996457562911
-0.2000000000000000 0.9999952917010211 0.9999977443008894 0.9999999997655000 0.9999999999862120
-0.1000000000000000 0.9999999046002306 0.9999999998972079 0.9999999999998473 0.9999999999999849
0.0000000000000000 0.9999999963422543 0.9999999999988873 0.9999999999999996 0.9999999999999999
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AIII Model:

(Hψ)x = mx σ̂2ψx

+
1

2
tx [(σ̂1 + i σ̂2)ψx+1 + (σ̂1 − i σ̂2)ψx−1]

+
1

2
t ′[(σ̂1 + i σ̂2)ψx+2 + (σ̂1 − i σ̂2)ψx−2],

BDI Model:

(Hψ)x = mx σ̂1ψx

+
1

2
tx [(σ̂1 + i σ̂2)ψx+1 + (σ̂1 − i σ̂2)ψx−1]

+
1

2
t ′[(σ̂1 + i σ̂2)ψx+2 + (σ̂1 − i σ̂2)ψx−2].

The disorder is present in the first-neighbor hopping and in the onsite potential:

tx = t + W1ωx , mx = m + W2ω
′
x , ωx , ω

′
x ∈ [− 1

2 ,
1
2 ].
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The Model: (Γ’s generate Cl5)

(Hψ)x =
1

2

3∑
j=1

{
ıΓj(ψx−ej − ψx+ej ) + Γ4(ψx−ej + ψx+ej )

}
+ ıtΓ1Γ3Γ4 + (m + Wωx)Γ4ψx

JUNTAO SONG, CAROLYN FINE, AND EMIL PRODAN PHYSICAL REVIEW B 90, 184201 (2014)

form:

(Hψ)x = m!4ψ x + 1
2

3∑

j=1

{i!j (ψ x−ej
− ψ x+ej

)

+!4(ψ x−ej
+ ψ x+ej

)}, (3)

where ej ’s represent the fundamental translations of the lattice.
Since !−1

5 !j!5 = −!j for j = 1, . . . ,4, it is evident that H
has the chiral symmetry which is implemented by !5. Despite
its minimality, the model displays a rich phase diagram as a
function of the (unique) parameter m.

Indeed, in k space, the model takes the explicit form [12]

Hk =
3∑

j=1

sin kj!j +

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠ !4. (4)

Given the defining properties of the ! matrices, one has

H 2
k =

⎡

⎣
3∑

j=1

sin2 kj +

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠
2 ⎤

⎦ I4×4, (5)

hence band spectrum

E±
k = ±

⎡

⎣
3∑

j=1

sin2 kj +

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠
2 ⎤

⎦

1
2

(6)

and the flat-band Hamiltonian Qk ≡ H (k)
|H (k)|

Qk = (E+
k )−1

⎡

⎣
3∑

j=1

sin kj!j +

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠ !4

⎤

⎦ (7)

can be explicitly computed. This Qk has only off-diagonal
terms (due to the chiral symmetry): Qk =

(
0 Uk

U
†
k 0

)
, and the

unitary matrix Uk, which uniquely determines the ground state
of the model, can be easily read from here:

Uk = (E+
k )−1

⎡

⎣
3∑

j=1

sin kjσj − i

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠ I2×2

⎤

⎦ .

(8)

The bulk invariant is given by the winding number of Uk [22]:

ν(Uk) = $3

∑

ρ∈S3

(−1)ρ
∫

BZ
d3k

3∏

j=1

U
†
k∂ρj

Uk, (9)

where the summation is over all permutations of the three
indices. A map of ν as a function of the parameter m is reported
in Fig. 1. As one can see, there are three domains of topological
phases with ν = +1 and −2, the transition points being located
at m = −3, −1, +1, 3. At these points, the spectral gap of the
model closes.

The minimal model of Eq. (3) has two more symmetries:
the time-reversal symmetry implemented by (σ1 ⊗ iσ2)K
(squaring to −1) and the particle-hole symmetry implemented
by (σ2 ⊗ σ2)K, where K is the ordinary complex-conjugation
operator. Note that these two symmetrical operators do not
commute with each other, henceforth the model cannot be

Topological 
(  = -2)

Trivial 
(  = 0)

-3

Topological 
(  = +1)

Topological 
(  = +1)

Trivial 
(  = 0)

-1 +3+1

FIG. 1. (Color online) The phase diagram of the clean model
defined in Eq. (3) or (4). Here, the reader can identify the topological
phases with ν = −2, ν = +1, and the trivial topological phase ν = 0
with varying the parameter m.

placed in the DIII-symmetry class [10–12]. In the previous
paper [10], this Hamiltonian of Eq. (3) was classified into a
AIII-symmetry class. However, this Hamiltonian is not the
simplest model for AIII-symmetry class due to the presence
of the time-reversal symmetry and the particle-hole symmetry.
It is quite interesting to investigate what happens if we break
these symmetries and consequently reduce the Hamiltonian of
Eq. (3) to a standard AIII-symmetry model with only chiral
symmetry. As such, we add one more term to the model, which
becomes

(H0ψ)x = m!4ψ x + it!1!3!4ψ x

+ 1
2

3∑

j=1

{i!j (ψ x−ej
− ψ x+ej

)

+!4(ψ x−ej
+ ψ x+ej

)}. (10)

In k space, the extended model takes the form

Hk =
3∑

j=1

sin kj!j +

⎛

⎝m +
3∑

j=1

cos kj

⎞

⎠ !4 + it!1!3!4,

(11)

and the bulk invariant can be computed as before. A map of the
winding number for the model in Eq. (10) is reported in Fig. 2.
The most important feature in this diagram is the emergence of

ν = 0
Metal

ν = 1 ν = -2

6

4

2

0

-2

-4

-6

-4 -2 0 2 4 

ν = 1t

m

ν = 0

FIG. 2. (Color online) The phase diagram of the clean model
defined in Eq. (10). Here, the reader can identify the topological
phases with ν = −2 and ν = +1 (the rhombic domains), a large
metallic phase (the shaded region), and the trivial topological phase
ν = 0.
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EFFECT OF STRONG DISORDER ON THREE- . . . PHYSICAL REVIEW B 90, 184201 (2014)

a metallic (gapless) phase which now surrounds the domains
of topological phases.

The last comment for this section is that both models
are interesting for our analysis in the presence of disorder.
Indeed, while the time-reversal and particle-hole symmetries
do not play any topological role, as we shall see, their
presence or absence moves the critical points between the
topological phases from the symplectic universal class to the
unitary universal class, which can induce distinct physically
measurable effects.

B. Disordered case

We only consider onsite disorder, induced by random
fluctuations of m:

(Hωψ)x = (m + Wωx)"4ψ x + it"1"3"4ψ x

+ 1
2

3∑

j=1

{i"j (ψ x−ej
− ψx+ej

)

+"4(ψ x+ej
+ ψ x−ej

)}, (12)

where {ωx}x∈Z3 are independent random numbers drawn from
the interval [− 1

2 , 1
2 ] (white noise). As one can easily see,

the disordered Hamiltonian continues to display the chiral
symmetry: "−1

5 Hω"5 = −Hω.
The following details are of technical nature but neverthe-

less important for our analysis, and the related mathematic
argumentation can be also found in Refs. [20,21,23]. Readers
who are only interested in physical results on the first reading
can skip the following mathematic part. We denote a generic
disorder configuration {ωx}x∈Z3 by ω, and the latter is seen
as a point in $ = [− 1

2 , 1
2 ]Z

3
. This is compact metrizable set

which admits a probability measure, to be used for disorder
averages, which is simply defined by dP (ω) =

∏
x∈Z3 dωx . It

is important to note that there is a natural action of the lattice
translations on $:

(taω)x = ωx+a, (13)

and that the measure dP (ω) is ergodic relative to this action.
The family of disordered Hamiltonians {Hω}ω∈$ defined in
Eq. (12) is covariant, in the sense that

TaHωT −1
a = Htaω (14)

for any lattice translation Ta. Furthermore, any family of
operators {φ(Hω)}ω∈$ produced by the functional calculus
with Hω is covariant, and the same can be said for the
commutators {[X,φ(Hω)]}ω∈$, where X is the position op-
erator. The covariant property, together with the ergodicity of
the probability measure, ensures the following self-averaging
principle:

T{FωGω . . .} =
∫

$

dω tr0{FωGω . . .} (15)

for any covariant observables Fω,Gω, . . . . Above, T{. . .}
represents the trace per volume and tr0 is the trace over C4.

The bulk invariant can be defined as before, with the only
difference that the calculus must proceed in the real-space
representation. Indeed, by considering again the flat-band
Hamiltonian, the chiral symmetry annihilates the diagonal

FIG. 3. (Color online) The phase diagrams in the phase space
(m,t) at disorder strength W = 4. The computations were completed
on a cubic lattice of N = 16×16×16 unit cells, following the
procedure described in the text.

blocks and

Qω = Hω

|Hω|
=

(
0 Uω

U †
ω 0

)
(16)

with Uω a unitary operator which generates a covariant
family when ω is allowed to take values in $. The natural
generalization of the winding number to the disordered case is

ν(Uω) = iπ

3

∑

ρ∈S3

(−1)ρ T
⎧
⎨

⎩

3∏

j=1

U−1
ω [Xρj

,Uω]

⎫
⎬

⎭ , (17)

which for the translational-invariant case is just the real-space
representation of the k-space formula in Eq. (9). The following
index theorem is adopted from Ref. [21]:

Theorem [21]. On the space ℓ2(Z3,C4) ⊗ C2 let∑3
j=1 Xj ⊗ σj be the Dirac operator and let + denote the

projector onto the positive spectrum of this Dirac operator.

FIG. 4. (Color online) The phase diagrams in the phase space
(m,W ) at t = 0. The computations for ν were done with a cubic
lattice of N = 16×16×16 unit cells.
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representation. Indeed, by considering again the flat-band
Hamiltonian, the chiral symmetry annihilates the diagonal
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FIG. 5. (Color online) Evolution of the winding number ν with
disorder W (a) and parameter m (b). The raw, unaveraged data for
five disorder configurations are shown by the scattered points and the
average by the solid line. The marked data points report quantized
values with three digital precisions. The computations were done with
a cubic lattice of N = 21×21×21 unit cells.

Assume
∫

"

dP (ω) |⟨x|Uω| y⟩| ! Ae−γ |x− y| (18)

for some strictly positive A and γ . Then, with probability one
in ω, %Uω% is a Fredholm operator and

ν(Uω) = Index %Uω%. (19)

Furthermore, the Fredholm index on the right-hand side is
independent of ω and is invariant against any continuous
deformations of the Hamiltonian as long as Eq. (18) is satisfied.

The condition written in Eq. (18) holds true if the Fermi
level resides in a region of Anderson localized energy spectrum
[21]. This analytic result ensures that the topological phases
do not disappear when the disorder is turned on, and that
topological phases with different ν’s are separated by a
metallic phase boundary. The numerical algorithm we use
to compute the noncommutative winding number is based
on the canonical finite-volume approximations discovered in
Ref. [23] and was discussed in detailed in Ref. [20]. Note that
the winding-number formula in Eq. (17) has the self-averaging
property discussed above, hence, the quantized values of ν can
be obtained from a single-disorder configuration, provided the
size of the system is large enough. This will prove to be a great
numerical advantage of the approach.

Figure 3 reports the map of the winding number in the (m,t)
plane, computed at fixed disorder strength W = 4. As one can
clearly see, there are well-defined regions where the winding
number remains quantized and the topological phases seen
in Fig. 2 are still clearly visible. The phase boundaries of the
phase diagram moved quite visibly when compared with Fig. 2,
with the topological phases actually occupying more volume
after the disorder was turned on. Outside the topological re-
gions, the winding number does not drop to zero immediately,
indicating the presence of a substantial metallic region (defined
as having a diverging dynamical localization length). Hence,
the metallic phase present in Fig. 2 survives the disorder, but
this is of course not a surprise in space dimension d = 3.

Figure 4 reports the map of the winding number in
the plane (m,W ), computed at t = 0. As one can see, the

FIG. 6. (Color online) Statistics of the energy-level-spacing ensembles for Hamiltonian defined in Eq. (12) with t = 0 (time-reversal
symmetry) and disorder strength W = 4, collected at different energies. Section (a) of the figure corresponds to the topological phase ν = −2
(m = 0), while section (b) to the topological phase ν = +1 (m = 2). For both sections, the main panels show the variance of the ensembles. The
dotted lines mark the value 0.104 appropriate for a Gaussian symplectic ensemble of random matrices. The side panels show the histograms
of the level-spacing ensembles recorder at a few particular energies. This histograms are compared with the Wigner surmise distribution
PGSE(s) = 218

36π3 s4e− 64
9π s2

.
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