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How do you see a topological phase of matter??

Lattice Hilbert space ↔ some copies of `2
reg(Zd) inside L2(Rd).

Topological quantum chemistry: a topological insulator has
spectral subspaces which are “bad” copies of `2

reg(Zd).

Maths: non-free Hilbert C ∗r (Zd)-modules [Ludewig+T, 1904.13051].

These abstract characteristics are mostly invisible! So what exactly
do physicists see?
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“Topological physics” on the edge

In the last five years, physicists have successfully realised Chern
topological insulators in photonics, acoustics, cold atoms,
metamaterials, Floquet systems, exiton-polaritons. . .

A Chern insulator is a 2D material, described in the idealised
boundaryless-limit by a Z2-invariant Hamiltonian operator H = H∗

on `2
reg(Z2)⊗ C2 having a remarkable kind of spectral gap.

When the (material) boundary is
introduced, the spectral gap of H is
completely filled up with
edge-following topological states!
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Experiments2: edge-following states

2
Nash et al, PNAS (2015)
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Experiments3: edge-following states

3
Lu et at, Nature Photonics (2014); Süsstrunk, Huber, Science (2015); Klembt et at, Nature (2018) 5 / 24



Some history

Quantum Hall effect (1980)
convoluted
 Chern insulator Hamiltonians

on lattice Hilbert space `2
reg(Z2)⊗ C2:

HChern example =

(
m + Ux + Uy −iUx − Uy

−iUx + Uy −m − Ux − U∗y

)
+ adjoint.

Here Ux ,Uy are unit translations in x and y directions. For
0 < m < 2, this has a spectral gap and realises a “Chern insulator”.

I will prove directly that any Chern insulator must acquire crazy
edge-following states which fill up spectral gap.

Hope: motivate mathematical investigation4 into general
bulk-edge correspondences, especially coarse index perspective.

4
Prior work is geometrically limited to very special straight edges.
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Abstract Chern insulator

Regular representation: Z2 3 γ 7→ Uγ ∈ B(`2
reg(Z2)).

These operators generate the reduced group C ∗-algebra C ∗r (Z2).

Generic translation invariant Hamiltonian:

H = H∗ =
∑
γ∈Z2

Uγ ⊗Wγ ∈ B(

2 d.o.f. / site︷ ︸︸ ︷
`2
reg(Z2)⊗ C2),

with each Wγ = W ∗
−γ a 2× 2 hopping matrix.

Locality: Sufficiently fast decay of γ 7→Wγ ⇒

H ∈ M2(C ∗r (Z2))
Fourier∼= C (T2;M2(C)).

After Fourier transform, H becomes a continuous family {Hk}k∈T2

of 2× 2 Hermitian matrices, acting on two copies of L2(T2).
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Abstract Chern insulator

a

b

c

d

gap in σ(Hinsulator)

E

Each Hk , k ∈ T2, has two eigenvalues, and σ(H) = ∪k∈T2 σ(Hk).
Defn: H = Hinsulator spectrum comprises two separated bands.

Eigenspaces for lower energy band form a line bundle Llow → T2,
classified by first Chern class in H2(T2,Z) ∼= Z. For
HChern example, get the generating class!
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Abstract Chern insulator

a

b

c

d

no gap in σ(ĤChern)

E

Definition: A Chern insulator HChern is a Hinsulator such that
c1(Llow) is the generator [b]︸︷︷︸

Bott

of H2(T2) ∼= Z ∼= K̃ 0(T2).

Physics observation: Let S be lattice points lying on one side of
a partition (i.e. in the material sample). Truncated ĤChern acting
on `2(S)⊗ C2 acquires spectra filling up the gap of HChern!
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Abstract Chern insulator

Unlike idealised H, the true truncated Hamiltonians Ĥ do not
enjoy Z2 symmetry, and Fourier transform fails.

Nevertheless, with C ∗-algebras, can relate the spectra of H and Ĥ!

a

b

c

d

E
Recall that H = H∗ ∈ M2(C ∗r (Z2)). For Hinsulator, spectral
gap gives room for the lower band spectral projection to be
given by continuous functional calculus:

ϕ(Hinsulator) ∈ M2(C ∗r (Z2)), ϕ(λ) =

{
1, λ ∈ [a, b]

0, λ ≥ c .

In K -theory: [ϕ(HChern)] = [b] ∈ K0(C ∗r (Z2)) = K 0(T2).
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Preliminaries: Toeplitz algebra

Instead of Uγ , truncated Hamiltonians Ĥ live in “Toeplitzified”
version of C ∗r (Z2) generated from truncated translations Ûγ .

1D Example: If Z is visualised on a line, what happens to Uγ
upon truncation to the right half-line: `2(Z)→ `2(N)?

• • • • • •

U = U1

. . .

n = −1 n = 0 n = 1 n = 2 n = 3 n = 4

• • • • • •

Û = Û1

. . .

Generating translation U = U1 becomes the unilateral shift Û,
which is a non-unitary isometry with index −1.
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Preliminaries: Toeplitz algebra

Define C ∗r (N) to be the C ∗-subalgebra of B(`2(N)) generated by Û.

Think of C ∗r (N) as a “quantisation” of C ∗r (Z) taking U to Û.
Symbol homomorphism π : C ∗r (Z)→ C ∗r (N) takes Û back to U.

Observation: The boundary projection pn=0 = 1− ÛÛ∗ is killed
by π, and generates the compact operator ideal K(`2(N)).

Short exact sequence 0→ K → C ∗r (N)
π−→ C ∗r (Z)→ 0

The invertible operator U ∈ C ∗r (Z) lifts incurably to a
non-invertible Û in C ∗r (N): there is a topological obstruction!
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Preliminaries: Toeplitz algebra

More precisely, any invertible function f ∈ C (T) ∼= C ∗r (Z) lifts to a
Toeplitz operator Tf ∈ C ∗r (N) which is Fredholm.
Any other lift Tf +compact has the same Fredholm index.

Toeplitz index theorem [F. Noether ’21]

Non-invertibility of Tf , as measured by analytic Fredholm index,
actually equals the topological winding number index of f .

Homological algebra: lifting obstructions in SES can be detected
by connecting maps, but these are hard to compute.

K -theory is powered by Bott periodicity: LES  cyclic 6-term
exact sequences ⇒ much better chance of being computable!
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K -theory for operator algebras

For A a unital C ∗-algebra, K0(A) is Grothendieck group of
isomorphism classes of projections in M∞(A) = limN→∞MN(A).

K1(A) is homotopy classes of unitaries in U∞(A)+.

Example: K0(K)
Morita∼= K0(C) ∼= K 0(pt) ∼= Z, and K1(K) = 0.

Example: K0(C ∗r (Z)) = K 0
top(T) ∼= Z generated by identity

projection/trivial line bundle.

Example: K1(C ∗r (Z)) = K1(C (T)) ∼= Z generated by U, or the
basic Laurent polynomial z 7→ z with winding number 1.

Example: K0(C ∗r (Z2)) = K 0
top(T2) ∼= Z⊕ Z generated by trivial

and Bott line bundles.
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K -theoretic Toeplitz index

K -theory turns 0→ K → C ∗r (N)
π−→ C ∗r (Z) ∼= C (T)→ 0 into

Z︷ ︸︸ ︷
K0(K) //

Z︷ ︸︸ ︷
K0(C

∗
r (N)) //

Z︷ ︸︸ ︷
K0(C(T))

Exp

��
K1(C(T))︸ ︷︷ ︸

Z

Ind

OO

K1(C
∗
r (N))︸ ︷︷ ︸
0

oo K1(K)︸ ︷︷ ︸
0

0oo

Û ∈ C ∗r (N) has index −1. So Ind is an isomorphism, and the
middle two groups are solved.

Exp is a suspended/“higher” index composed with Bott
isomorphism K2

∼= K0; measures obstruction to lifting projections.
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2D version: Half-plane Toeplitz algebra

•
w

Ûx

Ûy
Original C ∗r (Z2) was generated by
commuting unitaries Ux and Uy .

Toeplitzification means truncating
`2(Z2)→ `2(N× Z);
Get isometries Ûx , Ûy generating the
semigroup algebra C ∗r (N× Z).

SES 0→ I → C ∗r (N× Z)
π−→ C ∗r (Z2)→ 0 .

Kernel I is generated by edge-projection Px=0 = 1− Ûx Û
∗
x .

Observation: the edge-travelling operator w = Û∗yPx=0 ∈ I.
We will see that w is the smoking gun of edge-following states!
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LES for half-plane algebra (Künneth)

Z︷ ︸︸ ︷
K0(I)

0 //

Z[1]︷ ︸︸ ︷
K0(C ∗r (N× Z))

π∗ //

Z[1]⊕Z[b]︷ ︸︸ ︷
K0(C ∗r (Z2))

Exp

��
K1(C ∗r (Z2))︸ ︷︷ ︸

Z2

Ind

OO

K1(C ∗r (N× Z))︸ ︷︷ ︸
Z

π∗oo K1(I)︸ ︷︷ ︸
Z[w ]

0oo

The LES yields [w ] = Exp[b] ≡ Exp[ϕ(HChern)] .

Slogan: When performing half-space truncation, obstruction to
maintaining spectral gap of a Chern insulator is the edge-travelling
operator!
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Gap-filling phenomenon [T, 1908.05995]

Just as ϕ(HChern) ∈ M2(C∗
r (Z2)), also ϕ(ĤChern) ∈ M2(C∗

r (N× Z)).
While the former is a projection,

Theorem

ϕ(ĤChern) ∈ M2(C∗
r (N× Z)) is no longer a projection.

Proof.

Otherwise, ϕ(ĤChern) gives a class in K0(C∗
r (N× Z)), and

0
exact

= Exp(π∗[ϕ(ĤChern)]) = Exp[ϕ(π(ĤChern))]

= Exp[ϕ(HChern)]

= Exp[b] = [w ] 6= 0 ∈ K1(I).

17 / 24



Gap-filling phenomenon [T, 1908.05995]

Corollary

ĤChern has spectrum filling the entire gap (b, c) in σ(HChern).

Proof.

Choose supp(ϕ′) = [b′, c ′] with b ≤ b′ < c ′ ≤ c arbitrarily.
Since ϕ(ĤChern) is not a projection,

∅ 6= {λ ∈ σ(ĤChern) : ϕ(λ) 6= 0, 1} ⊂ [b′, c ′].

Remark: Same argument for ĤChern + (pert. in I).
Remark: Exp was first exploited by Kellendonk–Richter–
Schulz-Baldes to understand quantised edge conductance in QHE.
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Gap-filling states ⇒ quantised boundary currents

Connes’ cyclic cohomology gives a NC version of de Rham currents.

Example: U ∈ C ∗r (Z) Fourier transforms to Laurent z : e iθ 7→ e iθ.

〈Wind, [z ]〉 =
1

2πi

∫
T
z−1dz ∈ Z ⊂ C

pairs a cyclic 1-cocycle integrally with [z ] ∈ K1(C∞(T)).

Sketch for [w ] = Exp[ϕ(HChern)]:
Let X be position-along-boundary-operator:

1 = τ︸︷︷︸
trace
length

(w−1[X ,w ]) = τ(ϕ′(HChern)︸ ︷︷ ︸
gap′s density

matrix

Ẋ︸︷︷︸
velocity

) = edge current
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Propagating around corners

•
wq

F2

F1

Ûa1

Ûa2

Corner of a material ≈ convex cone ⇒
subsemigroup S ⊂ Z2 preserves
truncation.

0→ I → C ∗r (S)
π−→ C ∗r (Z2)→ 0.

Compute whether Exp[b] 6= 0 ∈ K1(I).
If so, conclude that ĤChern acquires
gap-filling spectra.

Observation: ker(π) = I is generated by face projections PF1 ,PF2 .
Observation: Edge-travelling operator wq = Û∗a2

PF2 + Ûa1PF1 ∈ I.
Observation: There exists an index 1 Fredholm operator in C ∗r (S).
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Propagating around corners

Theorem (T, 1908.05995; cf. Cuntz ’17)

Z2︷ ︸︸ ︷
K0(I) //

cokerM⊕Z[1]︷ ︸︸ ︷
K0(C∗r (S))

π∗ //
Z[1]⊕Z[b]︷ ︸︸ ︷

K0(C∗r (Z2))

Exp

��

Z2︷ ︸︸ ︷
K0(I′)

0 //

(detM)

(κ|)∗

aa

K0(C∗r (N2))︸ ︷︷ ︸
Z[1]

π∗ //

κ∗

OO

Z[1]⊕Z[b]︷ ︸︸ ︷
K0(C∗r (Z2))

Exp

��

diag(1,detM)

κ̌∗

==

K1(C∗r (Z2))︸ ︷︷ ︸
Z2

Ind=1

OO

M⊥

κ̌∗

||

0︷ ︸︸ ︷
K1(C∗r (N2))

0oo

κ∗

��

K1(I′)︸ ︷︷ ︸
Z[w ]

0oo

(κ|)∗

detM

""
K1(C∗r (Z2))︸ ︷︷ ︸

Z2

Ind=M

OO

K1(C∗r (S))︸ ︷︷ ︸
0

0
oo K1(I)︸ ︷︷ ︸

Z[w ]

oo
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Bumpy corners
Harder analysis, but slogan still true: [ϕHChern

] ≡ [b]
Exp7→ [wq].

• •

••

• • • •

•

• • •

◦

◦
×

×

×

×

× ×

×

× ×

⊗

⊗

�

wq

Ûx

Ûy

•(0, 0)

Conclusion: Any physical realisation of abstract Chern insulator
will have gap-filling and edge-following states that produce
quantised boundary currents.
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Partitioned manifold “coarse” index

This K -theory machine works much more generally: continuum
version is in progress, with M. Ludewig. Lattice computation is
“embedded”, as in quantum chemistry.

Remark: In ’88, J. Roe discovered a Partitioned manifold index
theorem: Dirac operator on noncompact manifold X has a “coarse
index” in K1( C ∗(X )︸ ︷︷ ︸

Roe algebra

), defined via an Exp map.

Compact partitioning hypersurface Y defines a cyclic 1-cocycle
which eats this K1-index to give a number equal to the index of
associated Dirac on Y . “Bulk index localises to boundary”!

Example: K1(C ∗(line)) ∼= Z, generated by the coarse index of i ddx .
Alternatively, the edge-travelling operator is a generator!
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Edge-following topological states: general phenomenon

Γ-invariant (magnetic) Hamiltonians H on L2(X ) give spectral
projections ϕ(H) defining K0(C ∗r (Γ)) classes (see [T+L 1904.13051])

One expects [ϕ(Htop)] to be detected by truncating to L2(U ⊂ X )
and looking for gap-filling states appearing at ∂U.

In analogous K -theory machine, C ∗(∂U) ∼ I, and indeed

Exp : K0(C ∗r (Γ))
6=0−−→ K1(C ∗(∂U)) in examples.

In dim(X ) = 2, typically ∂U ∼coarse line, then
Then K1(C ∗(∂U)) ∼= Z, with generator an “edge-travelling

operator” w hopping along a discretisation of ∂U, contributing one
unit of “edge current”. Thus Exp[ϕ(Htopological)] counts how

many units of w the edge states of Ĥtopological are equivalent to.
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