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Fields and Lagrangians
Classical to Quantum Physics

A Few Key Developments in the History of Mathematical
Physics

Fermat’s Theory of Optics (1662)

Newton’s Theory of Gravitation (Principia mathematica,
1687)

Lagrange’s Theory of Mechanics (Mécanique analytique,
1788)

Hamilton’s Theory of Mechanics (ca. 1835)

Maxwell’s Equations of Electromagnetism (ca. 1861)

Birth of Quantum Mechanics (ca. 1925)

Quantum Electrodynamics (QED, ca. 1948)

Yang-Mills Theory (1954)

Quantum Chromodynamics (QCD, ca. 1965–1975)

Superstring Theory (ca. 1980–)
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Classical to Quantum Physics

Fields

Most physical theories describe fields1, e.g., the gravitational field,
electric field, magnetic field, etc. Fields can be

scalar-valued functions (scalars),

sections of vector bundles (vectors),

connections on principal bundles (special cases of gauge
fields),

sections of spinor bundles (spinors).

1In French, resp. German, champs, resp. Feld, not corps or Körper.
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Lagrangians and Least Action

In classical physics, the fields satisfy a variational principle — they
are critical points of the action S , which in turn is the integral of a
local functional L called the Lagrangian. This is called the
principle of least action. The Euler-Lagrange equations for critical
points of the action are the equations of motion.

Examples

Let M be a 4-manifold, say compact.

1 Yang-Mills Theory. Field is a connection A on a principal
G -bundle. “Field strength” F is the curvature, a g-valued
2-form. Action is S =

∫
M Tr F ∧ ∗F .

2 General Relativity (in Euclidean signature). Field is a
Riemannian metric g on M. Action is S =

∫
M R dvol, R =

scalar curvature. Field equation is Einstein’s equation.
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Lorentz vs. Euclidean Signature

One point which often confuses mathematicians trying to read the
physics literature is a frequent shuttling back and forth between
writing things in Lorentz and Euclidean signatures. The basic
equations of physics do not treat space and time totally equally, in
the sense that the natural metric on spacetime is a Lorentz metric,
not a Riemannian one. However, in the Lorentz metric, most of the
integrals one needs (such as the one computing the action) do not
converge well, since one doesn’t have positivity for the Lagrangian.
Physicists are therefore fond of what’s called Wick rotation,
replacing t by it and thus “analytically continuing” from Lorentz
to Euclidean signature. This results in formulations which are
better behaved mathematically but not as realistic physically. Still,
one can often use this to some advantage, and we will sometimes
do this without further ado.
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Quantum Mechanics

Unlike classical mechanics, quantum mechanics is not
deterministic, only probabilistic. The key property of quantum
mechanics is the Heisenberg uncertainty principle, that observable
quantities are represented by noncommuting operators A
represented on a Hilbert space H. In the quantum world, every
particle has a wave-like aspect to it, and is represented by a wave
function ψ, a unit vector in H. The phase of ψ is not directly
observable, only its amplitude, or more precisely, the state

ϕψ(A) = 〈Aψ,ψ〉 .

But the phase is still important since interference depends on it.
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Quantum Fields

The quantization of classical field theories is based on path
integrals. The idea (not 100% rigorous in this formulation) is that
all fields contribute, not just those that are critical points of the
action (i.e., solutions of the classical field equations). Instead, one
looks at the partition function

Z =

∫
e iS(ϕ) dϕ or

∫
e−S(ϕ) dϕ ,

depending on whether one is working in Lorentz or Euclidean
signature. (Here we’ve taken ~ = 1.) By the principle of stationary
phase, only fields close to the classical solutions should contribute.
Expectation values of physical quantities are given by

〈A〉 =

(∫
A(ϕ) e iS(ϕ) dϕ

)
/Z .
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Basic Ideas of String Theory

The basic idea of string theory is to replace point particles (in
conventional physics) by one-dimensional “strings.” At ordinary
(low) energies these strings are extremely short, on the order of the
Planck length,

lP =

√
~G

c3
≈ 1.616× 10−35 m .

A string moving in time traces out a two-dimensional surface called
a worldsheet. The most basic fields in string theory are thus maps
ϕ : Σ → X , where Σ is a 2-manifold (the worldsheet) and X is
spacetime.
String theory offers [some] hope for combining gravity with the
other forces of physics and quantum mechanics.
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Strings and Sigma-Models

Let Σ be a string worldsheet and X the spacetime manifold. String
theory is based on the nonlinear sigma-model, where ϕ : Σ → X
and the leading term in the action is

S(ϕ) =
1

4πα′

∫
Σ
‖∇ϕ‖2 dvol , (1)

the energy of the map ϕ (in Euclidean signature). The constant α′

represents (typical string length)2 and 1/(2πα′) is the string
tension. We have to add to this various gauge fields (giving rise to
the fundamental particles) and a “gravity term” involving the
scalar curvature of the metric on X . Usually we also require
supersymmetry; this means the theory involves both bosons and
fermions and there are symmetries interchanging the two. (But
this is a subject for a different course, such as given by Freed.)
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The B-Field and H-Flux

For various reasons, it’s important to add to the action (1) another
(Wess-Zumino) term of the form

1

4πα′

∫
Σ
ϕ∗B , (2)

where B is a (locally defined) 2-form on spacetime, X . B is usually
called the B-field. It need not be closed or even globally defined,
just as long as it makes sense locally. (Recall the strings are really
“small” in most cases.) But H = dB, a 3-form, should always be a
well-defined closed 3-form on X , usually called the H-flux.
An interesting model for study, the Wess-Zumino-Witten model
(WZW) has X a compact Lie group, say SU(2), and H the
canonical 3-form. This H is not exact so B cannot be globally
defined.
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Integrality of the H-Flux

For reasons that we’ll discuss later, it’s important to know that the
de Rham class of the H-flux has to be an integral class. The
reason for this is that if ϕ(Σ) bounds two different oriented
3-manifolds (with boundary) M and M ′ in X , then

1

4πα′

∫
M∪−M′

H =
1

4πα′

∫
M

H − 1

4πα′

∫
M′

H

cannot contribute to the partition function or we’d have an
anomaly. But the partition function involves∫

e iS(ϕ) dϕ

so things are OK provided 〈H, [M ∪ −M ′]〉 ∈ 8π2α′Z.
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D-Branes

Physicists talk about both closed and open strings. The
terminology doesn’t quite match that of mathematicians. Both
kinds of strings are given by compact manifolds, but in the “open”
case there is a boundary. So to get a reasonable theory one has to
impose boundary conditions. Usually, these are Dirichlet or
Neumann conditions on some submanifold of X where the
boundary of Σ must map. These submanifolds are traditionally
called D-branes, “D” for Dirichlet and brane a back-formation from
membrane. Sometimes the name D-brane is retained even without
Dirichlet boundary conditions.
In post-1995 string theory, the D-branes play a fundamental role,
and can even sometimes be viewed themselves as (topological)
fields.
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An Open String Moving on a D-Brane
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The Different String Theories

There are really five different (supersymmetric) string theories,
having slightly different fields and Lagrangians. We will mostly
focus on types IIA and IIB. The five theories are:

Type I. This is the one theory that involves unoriented strings.

Type IIA. A theory with oriented strings where left-moving
and right-moving spinors have opposite handedness.

Type IIB. A theory with oriented strings where left-moving
and right-moving spinors have the same handedness.

E8 Heterotic. A theory where left-movers behave as in bosonic
theory and right-movers behave as in supersymmetric theory,
and the gauge group is the product of two copies of the
exceptional Lie group E8.

SO(32) Heterotic. A theory where left-movers behave as in
bosonic theory and right-movers behave as in supersymmetric
theory, and the gauge group is [locally] the Lie group SO(32).
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Textbook References on String Theory

From the physics point of view:

J. Polchinski, String Theory, 2 vols., Cambridge, 1998.

B. Zwiebach, A First Course in String Theory, Cambridge,
2004.

K. and M. Becker and J. Schwarz, String Theory and
M-Theory, Cambridge, 2007.

E. Kiritsis, String Theory in a Nutshell, Princeton, 2007.

From a more mathematical point of view:

Quantum Fields and Strings: A Course for Mathematicians, 2
vols., Amer. Math. Soc. and IAS, 1999.

Mirror Symmetry, Amer. Math. Soc. and Clay Math. Inst.,
2003.
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The Notion of Duality
T-Duality
Other Dualities in String Theory

What is a Duality?

A duality is a transformation between different-looking physical
theories that, rather magically, have the same observable physics.
Often, such dualities are part of a discrete group, such as Z/2 or
Z/4 or SL(2,Z).

Example (Electric-magnetic duality)

There is a symmetry of Maxwell’s equations in free space

∇ · E = 0, ∇ · B = 0,

∂E

∂t
= c ∇× B,

∂B

∂t
= −c ∇× E ,

(3)

given by E 7→ −B, B 7→ E . This is a duality of order 4.
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Fourier Duality

Example (Configuration space-momentum space duality)

Another example from standard quantum mechanics concerns the
quantum harmonic oscillator (say in one dimension). For an object
with mass m and a restoring force with “spring constant” k, the
Hamiltonian is

H =
k

2
x2 +

1

2m
p2 , (4)

where p is the momentum. In classical mechanics, p = mẋ . But in
quantum mechanics (with ~ set to 1),

[x , p] = i . (5)

We obtain a duality of (4) and (5) via m 7→ 1
k , k 7→ 1

m , x 7→ p,
p 7→ −x . This is again a duality of order 4, and is closely related
to the Fourier transform.
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T-Duality

One of the important dualities in string theory, called T-duality
(“T” for “torus”), will be the main subject of this lecture series.
This duality sets up an equivalence of string theories on two very
different spacetime manifolds X and X ]. The basic idea is that tori
in X are replaced by their dual tori in X ]. In the simplest case,
that means that X has a circle factor of radius R and X ] has a
circle factor of radius R̃ = α′

R . The duality also involves changes in
the metric and the B-field, known as the Buscher rules, after
Buscher, who derived them in 1987–88.
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Derivation of T-Duality, Following Buscher

Consider the simplest case. Take Σ a closed Riemannian
2-manifold and consider the action (1) for a map to a circle,
gotten by integrating a 1-form ω on Σ:

S(ω) =
1

4πα′

∫
Σ

R2

α′
ω ∧ ∗ω.

Add a new parameter θ, and consider instead

S(ω, θ) =
1

4πα′

∫
Σ

(
R2

α′
ω ∧ ∗ω + 2θ dω

)
.

For an extremum of S with respect to variations in θ, we need
dω = 0, so we get back the original theory. But instead we can
take the variation in ω.
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Derivation of T-Duality (cont’d)

δS =
R2

4πα′2

∫
Σ

(
δω ∧ ∗ω + ω ∧ ∗δω +

2α′

R2
θ dδω

)
=

R2

4πα′2

∫
Σ
δω ∧

(
2 ∗ ω +

2α′

R2
dθ

)
,

so if δS = 0, ∗ω = −α′

R2 dθ and ω = α′

R2 ∗ dθ. If η = dθ,
substituting back into S(ω, θ) gives

S ′(η) =
1

4πα′

∫
Σ

(
R2

α′

(
α′

R2

)2

η ∧ ∗η + 2
α′

R2
θ d ∗ η

)

= − 1

4πα′

∫
Σ

α′

R2
η ∧ ∗η

which is just like the original action (with η replacing ω, R̃ = α′

R
replacing R).
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Connection with Theta Functions

T-duality is also related to the classical theory of θ-functions.
Consider a simple theory where Σ = S1 and X = R/(2πRZ). (If
you like, these are the space-like directions and there is another
[inert] time direction, a factor of R.) A string winding around X is
like a wound-up rubber band; the higher the winding number, the
greater the energy. For simplicity, let’s just sum over the
semi-classical states, the harmonic maps x 7→ 2πnRx : R/Z → X ,
instead of taking the path integral, which involves
infinite-dimensional integration over all paths. The partition
function is then:

ZR =
∞∑

n=−∞
e−π n2 R2/α′

, (6)

a classical θ-function.
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Connection with Poisson Summation

Applying the identity∫ ∞

−∞
e−2π i x y e−s π x2

dx =
1√
s
e−π y2/s

together with the Poisson summation formula to (6) gives the
famous identity (used in the proof of the functional equation of the
Riemann ζ-function):

ZR =

√
α′

R
ZeR , (7)

where R̃ = α′/R, which is basically T-duality.
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S-Duality

Another important duality in string theory is S-duality (“S” for
“strong/weak”). This duality comes from the Montonen-Olive
conjecture, that says that the classical electric-magnetic duality
should extend in many cases to a duality of quantum theories
interchanging “electric” and “magnetic” charges. S-duality
interchanges the strong coupling limit of one string theory with the
weak coupling limit of another one.
It has been pointed out [Harvey, Moore, and Strominger, Reducing
S-duality to T-duality, Phys. Rev. D (3) 52 (1995), no. 12,
7161–7167] that S-duality and T-duality are closely linked.
S-duality is related to Langlands duality between two Lie groups,
and comes from the T-duality between the tori defined by the
weight and coweight lattices for a Cartan subalgebra.
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AdS/CFT Duality

Another duality which has attracted a lot of attention recently is
often called AdS/CFT duality. (Here AdS stands for “anti de
Sitter space,” a spacetime manifold of constant curvature, and
CFT stands for “conformal field theory.”) This duality was
discovered by Juan Maldacena in 1997, and in general posits an
equivalence between gauge theories in dimension d (usually 4) and
string theories in a spacetime of dimension d + 1. There is by now
a huge literature on this.
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M-Theory and F-Theory

There are many other dualities connected with string theory, which
fit into various patterns which have been schematized like this by
Schwarz, like this by Witten, like this by the Cambridge relativity
group, and like this at still another web site.
Superstring theories are (to eliminate certain anomalies) required
to be 10-dimensional. The dualities between them seem to involve
an 11-dimensional theory, called M-theory, which reduces to
supergravity in the low energy limit, and a 12-dimensional theory,
called F-theory.
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Vector Bundles
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Vector Bundles

Let X be a locally compact Hausdorff space. A family of vector
spaces over X is given by a continuous open surjective map
π : E → X , with E locally compact Hausdorff, with scalar
multiplication and vector addition maps, C× E → E and
E ×X E → E , satisfying certain obvious axioms. Such “families of
vector spaces over X” form a category, with the morphisms given
by commuting diagrams

E1
ϕ //

π1   @
@@

@@
@@

E2

π2~~~~
~~

~~
~

X

with ϕ linear on fibers. A vector bundle over X is then a family of
vector spaces over X , E , which is locally trivial, in that there is an
open covering {Uj} of X with E |Uj

∼= Uj × Cn in the category of
families of vector spaces over Uj for each i .
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Vector Bundles
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Classification of Vector Bundles by Cohomology

There are two [equivalent] ways to classify vector bundles (in the
category of families of vector spaces over X ): using (Čech)
cohomology and using homotopy theory. For simplicity let’s take X
compact.
The cohomology classification uses transition functions. If E

π−→ X
is a vector bundle trivialized by the covering {Uj}, then on Uj ∩Uk

we have two trivializations. These need not coincide, but must be
related by continuously varying automorphisms of Cn, i.e., by a
map gjk : Uj ∩ Uk → GL(n,C). The maps gjk satisfy the cocycle
identities {

gjkgkj = 1,

gjkgk`g`j = 1,

and thus define a class in H1(X ,GL(n,C)), where GL(n,C) is the
sheaf of germs of GL(n,C)-valued continuous functions. For
n > 1, this is nonabelian cohomology.
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Classification of Line Bundles

For n = 1 (the case of line bundles), GL(1,C) = C× and we have
an exact sequence of sheaves

0 → Z 2πi−−→ C exp−−→ C× → 1.

Since the sheaf C is “fine” and thus has no higher cohomology, we
get an exact sequence

0 = H1(X ,C) → H1(X ,C×) → H2(X ,Z) → H2(X ,C) = 0,

and thus line bundles are classified by H2(X ,Z). In fact, one can
check that one gets an isomorphism of groups

Pic X ∼= H2(X ,Z), (8)

where Pic denotes the group of line bundles, with group operation
given by fiberwise tensor product over C.
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Classification of Vector Bundles by Homotopy Theory

The classification by homotopy theory is based on the fact that
every vector bundle E (over a compact base X ) is a direct
summand in some trivial bundle X × CN . Here N can be much
larger than the rank n of the bundle. But this means that E can
be viewed as continuous way of selecting a rank-n subspace from
CN , or as a map ϕ : X → Gr(n,N), where Gr(n,N) is the
Grassmannian of n-dimensional subspaces in CN . Furthermore,
homotopic maps X → Gr(n,N) define isomorphic bundles, and
isomorphic bundles give rise to homotopic maps, at least if one
takes N sufficiently large. Thus we get a bijection

Vectn(X ) ∼= [X , lim
N→∞

Gr(n,N)],

where Vectn(X ) is the set of isomorphism classes of rank-n vector
bundles over X , and [X ,Y ] is the set of path components of
Map(X ,Y ).
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The Splitting Principle

Attached to vector bundles are certain canonical cohomology
classes, the Chern classes. There are several ways to define these.
One method uses the classification of line bundles via H2,
along with:

Lemma (Splitting Principle)

Given a compact space X and a rank-n vector bundle E over X ,
there is a compact space Y and a map f : Y → X, such that f ∗ is
injective on cohomology and such that f ∗(E ) splits as a direct sum
of line bundles: f ∗(E ) ∼= L1 ⊕ · · · ⊕ Ln.

This means that for many purposes, we can always pretend that a
vector bundle splits into line bundles. Such a splitting for physicists
corresponds to a symmetry breaking from U(n) to U(1)n.
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Chern Classes

Definition

Let X , E , Y , and f be as in the Splitting Principle. Define c(f ∗E )
to be

∏n
j=1(1 + c1(Lj)), where c1 is the class in H2 attached to a

line bundle via (8). This has the form 1 + c1(f
∗E ) + · · · , where

cj(f
∗E ) ∈ H2j(X ,Z) is the j-th elementary symmetric function of

the c1(Lj). Then define c(E ) so that f ∗c(E ) = c(f ∗E ). (Of
course one has to check that this makes sense.)

An alternate approach is to use the homotopy classification of
rank-n vector bundles via maps to

BU(n) = lim
N→∞

Gr(n,N).

One shows H∗(BU(n),Z) is a polynomial ring on classes
cj ∈ H2j(BU(n),Z), and then if E over X is classified by
f : X → BU(n), we define cj(E ) = f ∗(cj).
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Connections

There is another approach to Chern classes, more familiar to
physicists. Let π : E → X be a vector bundle. Put a hermitian
metric on E (a smoothly varying family of inner products on the
fibers). A connection on E is a way of relating one section to
another, and is defined by means of a “directional derivative”
operator

∇ : Γ∞(X ,TX )× Γ∞(X ,E ) → Γ∞(X ,E ) : (Y , s) 7→ ∇Y (s)

(here Γ∞ stands for smooth sections, TX for the tangent bundle)
satisfying

∇Y (f · s) = Yf · s + f · ∇Y (s).

Unlike the exterior derivative d , which satisfies d2 = 0, one need
not have ∇2 = 0, but ∇2 does not involve differentiation; it is
given by a two-form Θ, called the curvature of the connection.
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Chern-Weil Theory

More precisely,

Θ(Y ,W ) = ∇Y∇W −∇W∇Y −∇[Y ,W ],

and Θ is a 2-form with values in End(E ).

Theorem (Chern-Weil)

The de Rham classes of the coefficients of the characteristic
polynomial of

−1

2πi
Θ

are independent of the choice of connection and lie in the image of
Heven(X ,Z) → Heven(X ,R).

One can then check that these classes are the images of the cn(E )
in Heven(X ,R), up to sign.
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The Chern Character

The total Chern class behaves well under direct sum of vector
bundles:

c(E ⊕ E ′) = c(E )c(E ′),

but not so well under tensor products. So we introduce another
function of the Chern classes, the Chern character, that satisfies

Ch(E ⊕ E ′) = Ch(E ) + Ch(E ′), Ch(E ⊗ E ′) = Ch(E ) Ch(E ′).

For a line bundle L, let

Ch(L) = exp(c1(L)) = 1 + c1(L) + 1
2c1(L)2 + · · · .

For general vector bundles, we use the Splitting Principle and
define

Ch(L1 ⊕ · · · ⊕ Ln) =
n∑

j=1

Ch(Lj).

Note that the Chern character lives in H∗(X ,Q), not H∗(X ,Z).
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What is K -Theory?

For many purposes (and we will see a case in physics), one wants
to be able to add and subtract vector bundles. This is done using
(topological) K -theory. For X a compact Hausdorff space, we
define K (X ) to the group completion of the monoid of
isomorphism classes of vector bundles over X . In other words,
K (X ) is the set of formal differences [E ]− [F ], where E and F are
vector bundles over X , and where

[E ]−[F ] = [E ′]−[F ′] ⇔ E⊕F ′⊕G ∼= E ′⊕F⊕G for some G . (9)

This is an abelian group, and it becomes a commutative ring if we
let

([E ]− [F ]) · ([E ′]− [F ′]) = [E ⊗E ′]+ [F ⊗F ′]− [E ⊗F ′]− [F ⊗E ′].

The Chern character gives a ring homomorphism
K (X ) → Heven(X ,Q).
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Bott Periodicity

We define K -theory with compact supports for locally compact
spaces by letting

K (X ) =def ker ι∗ : K (X+) → K (pt),

where X+ = X ∪ {∞} is the one-point compactification of X , and
ι : pt → X+ is the inclusion of the point at ∞. With the
understanding that, if X is already compact, X+ = X q {∞}, this
extends the old definition. We let K−j(X ) = K (X × Rj).

Theorem (Bott Periodicity)

For any locally compact space X , there is a natural isomorphism
K (X ) → K (X × R2).

This has the consequence that we can think of K ∗(X ) as being
Z/2-graded.
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K -Theory and Cohomology

It turns out that the functor X  K ∗(X ) (extended to compact
pairs by letting K ∗(X ,A) = ker c∗ : K ∗(X/A) → K ∗(pt)) becomes
a cohomology theory on the category of compact (Hausdorff)
spaces, or on the category of locally compact spaces and proper
maps. In other words, it satisfies all the Eilenberg-Steenrod axioms
except for the dimension axiom. The theory is Z/2-graded, so
there are only two groups, K = K 0 and K 1 = K−1.
What’s the connection with ordinary cohomology? It turns out
that the Chern character K (X ) → Heven(X ,Q) becomes a rational
isomorphism of cohomology theories, sending products in K (X ) to
cup products in cohomology. But the torsion in K ∗(X ) and
H∗(X ,Z) can differ. For example, all torsion in H∗(RPn,Z) has
order 2, whereas the torsion in K ∗(RPn) has order going to infinity
as n →∞.
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The Atiyah-Hirzebruch Spectral Sequence

The connection between K ∗(X ) and H∗(X ,Z) is a little more
subtle, and is governed by something called the Atiyah-Hirzebruch
spectral sequence.

Theorem (Atiyah-Hirzebruch)

There is a spectral sequence converging to K ∗(X ) with
Ep,q

2 = Hp(X ,Kq(pt)). Note that K q(pt) = Z for q even, 0 for q
odd. The first non-zero differential is
d3 : Hp(X ,Z) → Hp+3(X ,Z), which is equal to the Steenrod
operation Sq3.

For those unfamiliar with spectral sequences, this basically says
that there is an iterative process for computing K ∗(X ) from
H∗(X ,Z), where at each stage of the process, one computes the
cohomology of the result of the previous stage Er with regard to a
differential dr (only affecting torsion).
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An Analogy: Charges in Electromagnetism

A big puzzle in classical electricity and magnetism is that
while there are plenty of charged particles (electrons, etc.), no
magnetically charged particles (magnetic monopoles) have
ever been observed, even though their existence would not
contradict Maxwell’s equations.

Another problem with classical E&M is that it doesn’t explain
why charges appear to be quantized, i.e., only occur in units
that are integral multiples of the charge of the electron (or of
the charges of [down-type] quarks).

Dirac (1931) proposed to solve both problems at once with a
quantum theory of E&M that in modern terms we would call a
U(1) gauge theory.
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The Dirac Monopole

In Dirac’s theory, we assume spacetime is a 4-manifold M, say
R4 \ R ∼= R2 × S2 (Minkowski space with the time trajectory of
one particle taken out). The (magnetic) vector potential
(A1,A2,A3) and electric potential A0 = φ of classical E&M are
combined into a single entity A, a (unitary) connection on a
complex line bundle L over M. Thus iA is locally a real-valued
1-form, and F = iµdA, µ a constant, is a 2-form encoding both of
the fields E (via the (0, j) components) and B (via the (j , k)
components, 0 < j < k). The Chern class c1(L) ∈ H2(M,Z) ∼= Z
is an invariant of the topology of the situation. Of course, F
should really be iµ times the curvature of A, and Chern-Weil
theory says that the de Rham class [F ] is 2πµ times the image of
c1(L) in H2(M,Z) ∼= Z. L is associated to a principal U(1)-bundle
P → M, and Dirac identifies a section of this bundle with the
phase of a wave function of a charged particle in M.

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



Quick Review of Topological K -Theory
K -Theory and D-Brane Charges

K -Homology and D-Brane Charges

Charge Quantization

In the above setup, if we integrate F over the S2 that links the worldline
we removed, we get 2πµc1(L), and this is the flux of the magnetic field
through S2. So the deleted worldline can be identified with that of a
magnetic monopole of charge g = µc1(L) in suitable units. Suppose we
consider the motion of a test charge of electric charge q around a closed
loop γ in M. In quantum E&M, by the Aharonov-Bohm effect, the
exterior derivative is replaced by the covariant derivative (involving the
vector potential A). So the phase change in the wave function is basically

the holonomy of (P → M,A) around γ, or (taking ~ = 1) exp
(
qµ
∮

γ
A
)
.

Since M is simply connected, γ bounds a disk D and this is
exp

(
−iq

∫
D

F
)
. Taking D in turn to be the two hemispheres in S2, we

get two answers which differ by a factor of

exp

(
i q

∫
S2

F

)
= e2πi q µ c1(L).

Since this must be 1, we get Dirac’s quantization condition qg ∈ Z.
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Chan-Paton Bundles

As we indicated before, D-branes are submanifolds of the
spacetime manifold X on which “open” strings are allowed to end.
In superstring theories, X is a 10-dimensional Lorentz manifold,
often taken to be a product of a Riemannian manifold with R
(representing time). One often talks about Dp-branes or p-branes,
the p (with values ≤ 9) representing the dimension of the
space-like part of the brane. (So caution: a p-brane is really
(p + 1)-dimensional.)

The D-branes carry Chan-Paton bundles. If such a bundle has
dimension n, the brane carries a U(n) gauge field, a connection on
the bundle. Branes and their Chan-Paton bundles are allowed to
coalesce or to split apart.

Just as there are antiparticles, there are antibranes. The bundles
on such branes should be viewed as having negative dimension.
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Charges and K -Theory

Just as in the case of electromagnetism, the D-branes carry
topological charges associated to the nontriviality of the
Chan-Paton bundles. In the case of electromagnetism, if X is
spacetime with the worldlines of the electrons removed, X admits
a line bundle whose class in Pic X is equivalent to knowledge of
the charges. The case of (type II) string theory is analogous, but
the gauge theories involved are nonabelian, i.e., involve vector
bundles of higher rank. Thus physicists arrived at the idea that
charges should be classified by K -theory of spacetime.
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The Minasian-Moore Formula

Some of the evidence for this idea comes from the Minasian-Moore
formula for D-brane charges. If we are only dealing with 9-branes
(those that fill all of spacetime), then the K -theory charge is just
the class [E ] of the Chan-Paton bundle E . For branes W which are
proper submanifolds of spacetime X , the embedding of W in X is
also relevant. When W and X have spinc structures (which means
one can define spinors and thus a theory of fermions), Minasian
and Moore found that the K -theoretic charge should be identified
with f!([E ]), where f : W ↪→ X and f! is the Gysin map in
K -theory, a “wrong way” map defined by Atiyah-Singer.

It is actually somewhat easier to think of brane charges as living in
K -homology, the homology theory dual to K -theory. In this theory,
maps go the “right way,” so we just compute the K -theory charge
in K∗(W ) and push it forward under f∗.
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Topological K -Homology

A geometric realization of K -homology was given by Baum and
Douglas. If X is a compact space, any K -homology class on X
may be defined by a “cycle” consisting of:

1 a compact spinc manifold W with a map f : W → X ;

2 a [virtual] vector bundle E over W .

We add cycles to make an abelian semigroup using disjoint union.
Two such cycles are homologous, i.e., define the same K -homology
class, if they are related by:

1 [spinc ] bordism;

2 the relation (W ,E1, f ) + (W ,E2, f ) = (W ,E1 ⊕ E2, f );

3 “vector bundle modification” (a way of building in Bott
periodicity).
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Analytical K -Homology

Another realization of K -homology (i.e., another definition of
cycles that yields an isomorphic theory) is due to Kasparov, and is
based on generalized elliptic operators or Fredholm modules. This
is a special case of Kasparov’s KK -theory for C ∗-algebras, in that
K∗(X ) (X compact) is given by KK∗(C (X ),C). An
(even-dimensional) K -homology cycle on X is given by a
Z/2-graded Hilbert space H = H0 ⊕H1 with a ∗-representation of
C (X ), and an odd bounded self-adjoint operator T such that
T 2 − 1 and [T , f ], f ∈ C (X ), are compact. (The typical example
is X a compact manifold, T = D(1 + D2)−1/2 for some
self-adjoint elliptic first-order partial differential operator, like the
Dirac operator.) The equivalence relation is generated by
homotopy, “block addition,” and the relation that (H,T ) is trivial
if T can be changed by a compact operator so that T 2 = 1 and
[T , f ] = 0, f ∈ C (X ).
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Relating the Two Realizations of K -Homology

Now we can explain how the two realizations of K -homology are
related. If W is a closed spinc manifold, it admits a Dirac operator
D. If E is a vector bundle over W and f : W → X , we form DE ,
“Dirac with coefficients in E .” This defines a class in the Kasparov
model of K∗(W ), the dimension given by the dimension of W mod
2. If f : W → X , where X is a compact space, we send the class
of (W ,E , f ) (in the Baum-Douglas model of K -homology) to
f∗([DE ]) in the Kasparov model, and this gives the isomorphism.
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Brane Charges in K -Homology

Now we can explain how brane charges are defined in K -homology.
If W is a D-brane in X with Chan-Paton bundle E , then if f
denotes the inclusion map W ↪→ X , (W ,E , f ) gives a class in
K∗(X ) via the Baum-Douglas model, provided that W is spinc .
We will see later when this condition needs to be modified, but
this condition is usually needed for anomaly cancellation
[Freed-Witten].

The identification of D-brane charges with K -homology classes is
Poincaré dual to the identification of these charges with K -theory
classes. So the two points of view are equivalent, at least under
mild conditions on X .
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Why C ∗-Algebras?

What’s so important about C ∗-algebras, especially for
noncommutative geometry and mathematical physics?

Compared to noncommutative algebras in general, they have a
fairly rigid structure, which makes them easier to classify.

They generalize the notion of algebras of continuous functions
(on locally compact Hausdorff spaces).

They have isometric representations on a Hilbert space, which
is required by the axioms of quantum mechanics.
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Banach and C ∗-Algebras

An algebra A (say over C) is called a Banach algebra if it is
equipped with a complete norm (thus making A into a Banach
space) with the compatibility condition

‖ab‖ ≤ ‖a‖ · ‖b‖ .

If there is also a conjugate-linear map a 7→ a∗ satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗, ‖a∗‖ = ‖a‖ ,

then A is called a Banach ∗-algebra. Finally A is called a
C ∗-algebra if it is a Banach ∗-algebra satisfying

‖a∗a‖ = ‖a‖2 .
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Consequences of the Axioms

In any Banach algebra A, the spectrum of an element a is the set
of λ ∈ C such that a− λ · 1 is not invertible. (If A doesn’t have a
unit, first adjoin a unit to A.) This is always a compact non-empty
subset of C, and always contains 0 if A does not have a unit. The
spectral radius of a is the radius of the smallest disk centered at 0
and containing the spectrum of a. This can be computed as
limn→∞ ‖an‖1/n.

In a C ∗-algebra A, if a = a∗, or even if a and a∗ commute, the
norm and spectral radius of a coincide. It follows from this that
the norm is determined by the algebraic structure (including the
∗-operation). Thus any ∗-homomorphism between C ∗-algebras is
norm non-increasing, and any injective ∗-homomorphism is an
isometry.
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Positive Elements

Proposition

In a C ∗-algebra A, if a = a∗, then the spectrum of a lies in R. If A
is unital and uu∗ = u∗u = 1, then the spectrum of u lies in T.
Furthermore, the following are equivalent:

1 a = a∗ and the spectrum of a lies in [0, ∞).

2 a = b2 for some b = b∗.

3 a = y∗y for some y ∈ A.

Elements a = a∗ are called self-adjoint. Every element is of the
form a + ib with a, b self-adjoint. Elements u with uu∗ = u∗u = 1
(in a unital C ∗-algebra) are called unitary. The elements A+ with
properties 1–3 above are called positive. They span A as a vector
space.
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Examples of C ∗-Algebras

Examples

1 A = Mn(C), ∗ =conjugate transpose, ‖a‖ = max|ξ|=1 |a ξ|.
2 H a Hilbert space, A = L(H) (bounded linear operators on
H),

〈a ξ, η〉 = 〈ξ, a∗η〉 , ‖a‖ = sup
‖ξ‖=1

‖a ξ‖ .

3 H as above, A = K(H) (compact linear operators on H). This
algebra does not have a unit unless H is finite dimensional.

4 X locally compact Hausdorff, A = C0(X ) (continuous
functions vanishing at infinity). ‖f ‖ = sup |f (x)|, ∗=complex
conjugation. This algebra has a unit exactly when X is
compact.

As we will see below, these examples are universal in a certain
sense.
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Basic Theorems About C ∗-Algebras

Theorem (Gelfand)

Every commutative C ∗-algebra A is isometrically ∗-isomorphic to
C0(X ) for some locally compact Hausdorff space X . The X is
unique up to homeomorphism and obtained from A as the space of
maximal (modular) ideals.

Theorem (Gelfand-Naimark)

Every C ∗-algebra embeds ∗-isometrically into L(H) (as a closed
∗-subalgebra) for some Hilbert space H. One can choose H finite
dimensional if dim A is finite.

The proofs may be found in standard books on operator algebras,
such as Dixmier, Pedersen, Kadison-Ringrose.
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Morita Equivalence

For many purposes, the obvious equivalence relation on
C ∗-algebras (∗-isomorphism) is too strong, and one needs
something a bit weaker. The correct notion is often Morita
equivalence, a C ∗-algebraic version (due to Rieffel) of an
equivalence relation from noncommutative ring theory. Two rings
A and B are Morita equivalent if their categories of left modules
are equivalent, i.e., they have the “same” representation theory.
Morita’s Theorem says that this is the case exactly when there is
an A-B bimodule AYB such that the equivalence is implemented
by tensoring with Y and the reverse equivalence is implemented by
tensoring with the “dual.” The C ∗-algebraic version is similar, but
one needs topological control in the form of A- and B-valued inner
products on Y satisfying certain nice relations.
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Characterization of the Compact Operators

As hinted above, the compact operators K(H) play a distinguished
role in the theory of C ∗-algebras. We often write simply K when H
is separable and infinite dimensional.

Theorem

For a C ∗-algebra A, the following are equivalent:

1 A is Morita equivalent to the scalars C.

2 A ∼= K(H) for some Hilbert space H.

If A is separable, one can add:

3 A has, up to unitary equivalence, a unique irreducible
representation on a Hilbert space.
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C ∗ Tensor Products

Suppose A and B are C ∗-algebras. Their algebraic tensor product
(over C) A� B is clearly a ∗-algebra with (a⊗ b)∗ = a∗ ⊗ b∗.
Often one wants to complete A� B to a C ∗-algebra. This is not
as simple a matter as one might hope, as there are usually many
different C ∗-algebra norms on A� B satisfying the obvious
cross-norm condition ‖a⊗ b‖ = ‖a‖ · ‖b‖. To avoid dealing with
this problem, we will always use ⊗ to denote the spatial tensor
product, which is the completion of A� B for its obvious
∗-representation on H⊗̄H′, where H, H′ are Hilbert spaces on
which A, resp., B act, and ⊗̄ is the tensor product of Hilbert
spaces. (It’s an easy but nontrivial exercise to check that A⊗ B
doesn’t depend on the choices of the (faithful) representations of A
and B.)
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Nuclearity

Aside from the spatial C ∗ tensor product A⊗B, which comes from
the minimal C ∗ cross-norm on A� B, there is also a maximal
tensor product A⊗max B, whose ∗-representations correspond to
commuting pairs of ∗-representations of A and B. Usually these
two products are different, and there may be many “intermediate”
tensor products between the two. But there is a unique C ∗

cross-norm on A� B if either A or B is nuclear. Commutative
C ∗-algebras, finite dimensional C ∗-algebras, and K are nuclear; so
are C ∗-algebras generated by representations of discrete amenable
groups. The class of nuclear C ∗-algebras is closed under
extensions, C ∗ tensor products, and inductive limits.
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The Brown-Green-Rieffel Theorem

There are two alternate characterizations of Morita equivalence
which are often useful.

Theorem (Brown-Green-Rieffel)

If A and B are C ∗-algebras, then they are Morita equivalent if and
only if they both embed as opposite “full corners” of another
C ∗-algebra C. A corner is a C ∗ subalgebra of the form pCp, where
p is a self-adjoint idempotent in the multiplier algebra of C . It is
full if CpC is dense in C. The opposite corner to pCp is
(1− p)C (1− p).

Theorem (Brown-Green-Rieffel)

If A and B are separable C ∗-algebras, then they are Morita
equivalent if and only if A⊗K ∼= B ⊗K.
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Projective Modules

Let A be a ring with unit. A finitely generated projective A-module
P is a direct summand in An for some n. These modules P are
especially nice; for example, ⊗A P and HomA(P, ) are exact
functors (preserve exact sequences). One can make isomorphism
classes of finitely generated projective modules into an abelian
monoid (abelian semigroup with a 0 element) ProjA under direct
sum ⊕. This is almost never a group since we have addition but
not subtraction. But we can convert ProjA into a group K0(A) by
taking its group completion or Grothendieck group.
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K0 of Rings

More precisely, K0(A) consists of objects [P]− [Q], where P and Q
are finitely generated projective A-modules, subject to the
relations:

1

[P]−[Q] = [P ′]−[Q ′] ⇔ P⊕Q ′⊕R ∼= P ′⊕Q⊕R for some R.
(10)

(Compare (9) in the definition of topological K -theory!)

2 ([P]− [Q]) + ([P ′]− [Q ′]) = [P ⊕ P ′]− [Q ⊕ Q ′].

When A is commutative, tensor product over A makes K0(A) into
a commutative ring with unit element [A].
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The Serre-Swan theorem

There is a close connection between topological K -theory for
spaces, defined using vector bundles, and K -theory for rings. This
comes from:

Theorem (Serre-Swan)

If X is a compact Hausdorff space and E is a vector bundle over
X , then the space Γ(E ) of continuous sections of E is a finitely
generated projective C (X )-module. Conversely, every finitely
generated projective C (X )-module is the space of a sections of a
vector bundle. Thus there is a natural isomorphism between K (X )
and K0(C (X )).
More precisely, E 7→ Γ(E ) sets up an equivalence of categories
between vector bundles over X and finitely generated projective
C (X )-modules.
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K0 as a Functor

It is easy to see that A 7→ K0(A) is a covariant functor from unital
rings to abelian groups. We extend it to nonunital rings via

K0(A) = ker
(
q∗ : K0(Ã) → K0(Z) ∼= Z

)
.

Here Ã, which as an abelian group is A⊕ Z · 1, is the result of
adjoining a unit to A, and q is the quotient map. If A is a
C-algebra, we could just as well define Ã to be A⊕ C · 1 and we’d
get the same group K0(A).
An interesting observation is that, even if we are only interested in
unital rings, K0 is functorial under nonunital ring homomorphisms.
There is one important special case.

Proposition (Morita Invariance)

For any ring A, the (nonunital) inclusion A ↪→ Mn(A) defined by

a 7→
(

a 0
0 0

)
induces an isomorphism on K0.
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K0 of Banach Algebras

Instead of looking at projective modules, it is sometimes easier to
look at idempotents. A finitely generated projective A-module P is
determined by an idempotent e ∈ Mn(A) (projecting An onto P).
K -theory for Banach algebras has somewhat better properties than
for general rings. The reason has to do with the following:

Proposition

Suppose A is a Banach algebra and two idempotents e, f ∈ Mn(A)
are sufficiently close. Then they are homotopic through
idempotents, and the associated projective A-modules Ane and
Anf are isomorphic.

Corollary

On the category of Banach algebras, K0 is a homotopy functor.
That is, homotopic homomorphisms induce the same maps on K0.
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Topological K -Theory of Banach Algebras

One can now extend K0 to a sequence of homotopy functors on
the category of Banach algebras. We define

Kn(A) = K0(C0(Rn,A))

for n ∈ N and A a Banach algebra. Note that C0(Rn,A), the
algebra of A-valued functions on Rn vanishing at infinity, is again a
Banach algebra with pointwise addition and multiplication and
norm ‖f ‖ = supx ‖f (x)‖. When A is a C ∗-algebra, this coincides
with the C ∗ tensor product C0(Rn)⊗ A.

Theorem (Bott Periodicity)

For any Banach algebra, there is a natural isomorphism of functors
K0

∼= K2 which comes from a specific Bott element in K0(C0(R2)).
Thus Kn(A) really only depends on n modulo 2.
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Exact Sequences

Theorem

Let A be a Banach algebra with a closed ideal I and quotient A/I .
Let i : I ↪→ A be the inclusion, q : A → A/I be the quotient map.
Then there is a natural long exact sequence

· · · i∗−→ K1(A)
q∗−→ K1(A/I )

∂−→ K0(I )
i∗−→ K0(A)

q∗−→ K0(A/I ) .

Because of Bott Periodicity, this sequence closes up to make an
“exact hexagon.”

This theorem says that K∗ behaves very much like a homology
theory on Banach algebras. If we dualize to spaces by letting
A = C0(X ) with X locally compact, A/I = C0(Y ) for Y closed in
X , then this becomes the long exact cohomology sequence in
topological K -theory, since X  C0(X ) is contravariant.
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Stability

Because of the fact that close idempotents in a Banach algebra are
equivalent, one can show that if B is a C ∗ inductive limit of
algebras Bn (this is the completion of the algebraic inductive limit
in the obvious C ∗ norm), then K0(B) = lim−→K0(Bn). Applying this
with Bn = Mn(A) for some other C ∗-algebra A, and observing that
lim−→Mn(A) = A⊗K, we deduce a topological form of Morita
invariance:

Theorem (Topological Morita Invariance)

For any C ∗-algebra A, the (nonunital) inclusion A ↪→ A⊗K
defined by a 7→ a⊗ e, e a rank-one self-adjoint projection, induces
an isomorphism on all topological K-groups.
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Group Actions on C ∗-Algebras

Definition

Let A be a C ∗-algebra. We denote by Aut A the group of
∗-automorphisms of A (algebra automorphisms preserving the
∗-operation). This is a topological group with the topology of
pointwise convergence. (When A = C0(X ), Aut A is the group of
homeomorphisms of X with the compact-open topology.) If G is a
locally compact group, an action of G on A or C ∗ dynamical
system is a continuous homomorphism α : G → Aut A.

Note: While one can also consider the norm topology on Aut A, it
is usually too strong to be useful. For example, the left translation
action of G on A = C0(G ) is usually not continuous for the norm
topology on Aut A. But this action is continuous for the topology
of pointwise convergence.
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Covariant Pairs of Representations

Let α : G → A be an action of a locally compact group on a
C ∗-algebra A. A covariant pair of representations of (A,G )
consists of the following:

1 a Hilbert space H,
2 a strongly continuous unitary representation U of G on H,
3 a ∗-homomorphism ϕ of A satisfying

U(g)ϕ(a)U(g)∗ = ϕ(αg (a)), g ∈ G , a ∈ A .

Examples

1 A = C, a unitary representation of G ;

2 A = C0(G ), G acting by left translation, U the left regular
representation of G on L2(G ), ϕ the action on C0(G ) on
L2(G ) by pointwise multiplication.
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Crossed Products

Given an action α : G → A of a locally compact group on a
C ∗-algebra, there is a unique C ∗-algebra whose ∗-representations
are in natural bijection with the covariant pairs of representations
of (A,G ). It is called the crossed product and denoted A oα G or
C ∗(G ,A, α). When G is discrete and A is unital, A oα G is
generated by a copy of A and unitary elements ug , g ∈ G , such
that ug a u∗g = αg (a). It is the completion of the finite linear
combinations

∑
g ug ag , ag ∈ A, in the greatest C ∗ norm.

Examples

1 A = C, A o G is the (maximal) group C ∗-algebra C ∗(G ) of
G , the largest C ∗-algebra completion of the convolution
algebra L1(G ).

2 A = C0(G ), G acting by left translation, C0(G ) o G ∼=
K(L2(G )) by the Stone-von Neumann-Mackey Theorem.
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Dual Actions

Suppose G is a locally compact abelian group. Its dual group is
Ĝ = Hom(G ,T). Pontrjagin duality says that the dual of Ĝ is G
again.

Examples

1 G = Z, Ĝ = T.

2 Vector groups Rn are self-dual. However it is better to
identify the Pontrjagin dual with the dual vector space.

If G as above acts on a C ∗-algebra A, there is a dual action α̂ of Ĝ
on A o G which when G is discrete is given by
α̂γ(ug a) = 〈γ, g〉ug a. (The action is isometric since 〈γ, g〉 has
absolute value 1.)
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Takai Duality

The following result generalizes the Stone-von Neumann-Mackey
Theorem.

Theorem (Takai)

Suppose α is an action of a locally compact abelian group on a
C ∗-algebra A. Let α̂ be the dual action on the crossed product.
Then

(A oα G ) obα Ĝ ∼= A⊗K(L2(G )) .

Furthermore, the double dual action can be identified with
α⊗ Adλ, where (Adλ)(g)(a) = λgaλ∗g , λ the left regular
representation.
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Connes’ Thom Isomorphism Theorem

For computing K -theory of crossed products, the following is quite
useful.

Theorem (Connes)

Let A be a C ∗-algebra equipped with an action of R. Then the
crossed product A o R has the same K-theory as if the action were
trivial, i.e., there is a functorial isomorphism

Ki+1(A)
∼=−→ Ki (A o R).
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The Trace Function

We want to introduce a particularly nice class of C ∗-algebras,
called algebras with continuous trace. Roughly speaking, these are
algebras that look something like C (X )⊗Mn(C) (in the unital
case) or C0(X )⊗K (in the nonunital case).

Definition

Let A be a C ∗-algebra. The spectrum of A, denoted Â, is the set
of unitary equivalence classes of irreducible ∗-representations of A
on Hilbert spaces. This is a topological space with the Fell
topology, defined by pointwise convergence of matrix coefficients
a 7→ 〈π(a) ξ, η〉.
Given a ∈ A+, its trace function Â → [0, ∞] is defined by
[π] 7→ Tr π(a). (The RHS only depends on the unitary equivalence
class of π.) This function is lower semi-continuous, not necessarily
continuous.
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Fell’s Condition

Fell characterized those C ∗-algebras for which there are lots of
elements with finite and continuous trace function.

Theorem

Let A be a C ∗-algebra. Then the following conditions are
equivalent:

1 Elements a ∈ A+ with finite and continuous trace function are
dense.

2 Â is Hausdorff and A has lots of local rank-one projections, in
that for every [π] ∈ Â, there is an element a ∈ A+ with σ(a) a
rank-one self-adjoint projection (in the Hilbert space of σ) for
every [σ] in a neighborhood of [π] in Â.
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The Theory of Dixmier-Douady

A C ∗-algebra A satisfying the equivalent conditions of the previous
theorem is called a C ∗-algebra with continuous trace or a
continuous-trace algebra (CT-algebra). The structure of these
algebras was investigated by Dixmier and Douady.

Theorem (Dixmier-Douady)

Let X be a second countable locally compact Hausdorff space, and
let A be a separable continuous-trace algebra with spectrum X.
Then A is isomorphic to the algebra Γ0(X ,A) of sections vanishing
at ∞ of a locally trivial bundle A with fibers isomorphic to K,
provided that either

1 A is stable, i.e., A ∼= A⊗K, or

2 X is finite dimensional and each irreducible ∗-representation
of A is of dimension ℵ0.
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The Dixmier-Douady Class and Bundle Theory

Whether or not A is locally trivial in the sense of the
Dixmier-Douady Theorem, Dixmier-Douady showed A has a
characteristic class δ(A) ∈ H3(X ,Z). This class doesn’t change if
we replace A by A⊗K. One may explain this Dixmier-Douady
class as follows:

Suppose for simplicity that A is locally trivial and comes from a
bundle A. This bundle has fibers K and structure group
AutK ∼= PU(H) = U(H)/T, where dimH = ℵ0. But U(H) is
contractible for H infinite dimensional. So PU has the homotopy
type BT, which is a K (Z, 2) space. And principal PU-bundles over
X are classified by

[X ,BPU] = [X ,K (Z, 3)] = H3(X ,Z) .

Thus every class in H3 comes from a stable CT-algebra.
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Gerbes

There is an alternative approach to the theory of continuous-trace
algebras and the Dixmier-Douady class via the theory of gerbes, as
discussed in the short survey by Hitchin. The main advantage of
this approach is that it meshes well with the theory of the H-flux in
string theory. Recall that we pointed out before that this is always
given by a class in H3(X ,Z), where X is spacetime. This class is
the Dixmier-Douady class of a gerbe, which in turn determines a
CT-algebra. The gerbe is precisely what is needed to give a
rigorous definition of the Wess-Zumino term in the string action,
without vague references to “locally defined” differential forms.
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Review: The Brauer Group of a Field

Before we get to the next topic, it’s convenient to review some
classical algebra. Suppose F is a field (this time in the sense of
commutative algebra, not in the sense of physics!). By
Wedderburn’s Theorem, every finite dimensional central simple
algebra over F is of the form Mn(D), where D is a division algebra
having F as its center. Two such algebras are F -Morita equivalent
if and only if the associated division algebras D are isomorphic.

The Morita equivalence classes [A] of central simple algebras A
over F form an abelian group under the operation ⊗F , with F as
identity element and [A◦] (A◦ the same underlying vector space as
A, but with the order of multiplication reversed) as the inverse of
[A]. This is called the Brauer group Br F . It can be shown to be
isomorphic to H2(Gal(F s/F ), (F s)×), F s the separable closure of
F .

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



Continuous-Trace Algebras and the Brauer Group
Twisted K -Theory

Continuous-Trace Algebras
The Brauer Group

The Brauer Group of a Commutative Ring

Similarly there is a notion of Brauer group Br R when R is a
commutative ring. This time central simple algebras are replaced
by Azumaya algebras or central separable algebras, R-algebras A
with R as center for which A is finitely generated projective as a
module over A⊗R A◦. The R-Morita equivalence classes of these
algebras again form a Brauer group Br(R), with the group
operation as tensor product over R and [A]−1 = [A◦]. This
generalizes the Brauer group for fields.
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The Grothendieck-Serre Theorem

The special case of Br R with R = C (X ) was studied by
Grothendieck and Serre, who found an analogue of the Galois
cohomology computation of the Brauer group for a field.

Theorem (Grothendieck-Serre)

Let X be a connected finite CW-complex. Then the Brauer group
of C (X ) can naturally be identified with the torsion subgroup of
H3(X ,Z), and the Azumaya algebras over C (X ) are all of the form
Γ(X ,A), where A is a locally trivial bundle of algebras over X with
fibers Mn(C) and structure group Aut Mn

∼= PGL(n,C).
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Green’s Topological Brauer Group

When X is a connected finite CW-complex, the Azumaya algebras
over C (X ) are precisely the unital CT-algebras with center C (X ).
Philip Green proposed taking a broader point of view: allowing X
to be locally compact and considering all CT-algebras A with
spectrum Â ∼= X , viewed as algebras over C0(X ). If one then
considers these algebras up to C0(X )-linear (topological) Morita
equivalence, they again form a Brauer group Br X with group
operation given by ⊗C0(X ) (topological tensor product).

Theorem (Green)

Let X be a second countable locally compact Hausdorff space.
Then the Dixmier-Douady class defines an isomorphism
Br X ∼= H3(X ,Z). When X is a finite CW-complex, the
Grothendieck-Serre Brauer group embeds as the torsion subgroup.
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An Analogy: Cohomology with Local Coefficients

To explain the idea of twisted K -theory, it helps to think of an
analogous (but simpler) theory: cohomology with local coefficients.
(Čech) cohomology can be identified with the sheaf cohomology of
a constant sheaf of abelian groups. If we replace this by a locally
constant sheaf or local coefficient system, we get cohomology with
local coefficients. For example, an oriented compact n-manifold M

satisfies Poincaré duality H i (M,Z)
∼=−→ Hn−i (M,Z). If M isn’t

orientable, there is a canonical local coefficient system Z that has
fiber Hn(M,M r {x}) at x ∈ M, and we instead have Poincaré

duality with local coefficients H i (M,Z)
∼=−→ Hn−i (M,Z).
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In a similar way, if an n-manifold has a spinc structure, it satisfies

Poincaré duality in K -theory, K i (M)
∼=−→ Kn−i (M). If there is no

spinc structure, we need twisted K -theory. The simplest way to
define this is, given a class H ∈ H3(M,Z), to take the K -theory of
a noncommutative C ∗-algebra, namely the stable continuous-trace
algebra CT (M,H) with H as its Dixmier-Douady class. Thus we
define K−i (M,H) = Ki (CT (M,H)).

Examples

1 M = SU(3)/SO(3), π1(M) = 0, H2(M) ∼= H3(M) ∼= Z/2.
One has Poincaré duality for twisted K -theory.

2 If H = 0, then CT (M, 0) = C0(M)⊗K, and
K−i (M,H) = Ki (C0(M)⊗K) ∼= Ki (C0(M)) ∼= K−i (M) by
Morita invariance. So twisted K -theory generalizes ordinary
K -theory.
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The Atiyah-Hirzebruch Spectral Sequence

Recall what we said before about how to compute K -theory
from ordinary cohomology. Something quite similar is true in the
case of twisted K -theory K ∗(X ,H), H ∈ H3(X ,Z), except that the
differentials in the spectral sequence now involve H as well. The
first non-zero differential is d3 : Hp(X ,Z) → Hp+3(X ,Z), which is
equal to the sum of the Steenrod operation Sq3 and cup product
with H.

Example

X = S3, H = k 6= 0 (when we identify H3(S3) with Z). In this
case Sq3 = 0 but d3 : Z ∼= H0(X ) → H3(X ) ∼= Z is multiplication
by k. So we get K 0(S3,H) = 0 and K 1(S3,H) ∼= Z/k.
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Twisted K -Theory and String Theory

So what does any of this have to do with string theory and
string duality?

Well, what we said before about brane charges being classified
by K -theory is not exactly right. This is true when the H-flux
is trivial, but not in general.

By Freed-Witten, in type II string theory, W3 of a stable
D-brane must match the restriction of the H-flux class.

In general type II string theory, the brane changes take values
in K ∗(X ,H), the Ramond-Ramond charges in the even group
in type IIB and in the odd group in type IIA.
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Topology Change in T-Duality

We talked about the simplest case of T-duality in the first lecture.
There, string theory on X = Z × T , where T = S1 is a circle of
radius R, corresponds to a dual string theory on X ] = Z × T ],
where T ] is the dual circle with radius R̃ = α′

R . But what if X is
fibered by circles, but doesn’t split as a product?
The first example of this phenomenon was studied by Alvarez,
Alvarez-Gaumé, Barbón, and Lozano in 1993. Their discovery was
generalized 10 years later by Bouwknegt, Evslin, and Mathai. Let’s
start with the simplest nontrivial example of a circle fibration,
where X = S3, identified with SU(2), T is a maximal torus. Then
T acts freely on X (say by right translation) and the quotient
X/T is CP1 ∼= S2, with quotient map p : X → S2 the Hopf
fibration. Assume for simplicity that the B-field vanishes.
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The Case of S3

Let’s examine this case in more detail. We have X = S3 fibering
over Z = X/T = S2. Think of Z as the union of the two
hemispheres Z± ∼= D2 intersecting in the equator Z 0 ∼= S1. The
fibration is trivial over each hemisphere, so we have
p−1(Z±) ∼= D2 × S1, with p−1(Z 0) ∼= S1 × S1. So the T-dual also
looks like the union of two copies of D2×S1, joined along S1×S1.
However, we have to be careful about the clutching that identifies
the two copies of S1 × S1. In the original Hopf fibration, the
clutching function S1 → S1 winds once around, with the result
that the fundamental group Z of the fiber T dies in the total space
X . But T-duality is supposed to interchange “winding” and
“momentum” quantum numbers. So X ] has no winding and is just
S2 × S1.
So what happened to the clutching function? It shows up in the
H-flux of the dual!
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T-Duality with a B-field

To explain this, let’s go back to Buscher’s derivation of T-duality
for the sigma-model with maps x = (x1, x0) : Σ → X ] = Z × S1,
but this time including the Wess-Zumino term. The action now
has the form

S(x) =
1

4πα′

∫
Σ

(
‖∇x1‖2

Z dvolΣ +
R2

α′
dx0 ∧ ∗dx0 + x∗B

)
. (11)

When we dualize the S1, we have to be careful about the part of B
that involves this factor.
In our situation, we are starting with a case where
B± = η± × dvolS1 is a 2-form over Z± × S1, and dB± is a volume
form on Z± × S1. Note that dB±, but not B±, are supposed to
agree on Z 0 × S1.
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T-Duality with a B-field (cont’d)

In terms of the closed 1-form ω = dx0, the action becomes

S(ω) =
1

4πα′

∫
Σ
· · ·+ R2

α′
ω ∧ ∗ω + ω ∧ x∗1β,

where we’ve left out terms not involving x0 : Σ → S1, since they
don’t change under T-duality. As before, introduce the
Lagrange multiplier θ to get

S(ω, θ) =
1

4πα′

∫
Σ
· · ·+ R2

α′
ω ∧ ∗ω + ω ∧ x∗1β + 2θ dω,

which if we vary θ gives back the original action. But take the
variation in ω instead.
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T-Duality with a B-field (cont’d)

We set δS = 0 and get what we had before but with an extra term:

2R2

α′
∗ ω + x∗1β + 2dθ = 0.

So ∗ω = −α′

R2

(
dθ + 1

2x∗1β
)

and ω = α′

R2 ∗
(
dθ + 1

2x∗1β
)
. If η = dθ,

substituting back into S(ω, θ) gives

S ′(η) =
−1

4πα′

∫
Σ
· · ·+ α′

R2

(
η +

1

2
x∗1β

)
∧ ∗
(
η +

1

2
x∗1β

)
,

which has the same form as S except that R ↔ α′

R and η is shifted
by 1

2x∗1β. Recall β is not globally defined; the forms β± differ by a
closed 1-form on Z 0.
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K -Theory Matching

Thus when we apply T-duality starting with X ] = Z × S1 and the
H-flux a generator of H3(X ]), we see the closed 1-form associated
to the T-dual is shifted on one hemisphere relative to the another,
the shifting associated to a generator of H1(Z 0). That shows
exactly that the clutching map of the dual theory on X
corresponds to the identity map S1 → S1, and so the dual X is not
S2 × S1 but S3.
We can also explain this in terms of matching of D-brane charges.
If the sigma models on X and X ] are to give indistinguishable
physics, the D-brane charges in the two theories must live in
isomorphic groups.
Thus we want to require K ∗(X ,H) ∼= K ∗+1(X ],H]). The degree
shift comes from interchange of type IIA string theory with type
IIB.
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The Case of S2 × S1 and S3

Let’s check this principle of K -theory matching in the case we’ve
been considering, X = S3 fibered by the Hopf fibration over
Z = S2. The H-flux on X is trivial, so D-brane changes lie in
K ∗(S3), with no twisting. And K 0(S3) ∼= K 1(S3) ∼= Z.
On the T-dual side, we expect to find X ] = S2 × S1, also fibered
over S2, but simply by projection onto the first factor. If the H-flux
on X were trivial, D-brane changes would lie in K 0(S2 × S1) and
K 1(S2× S1), both of which are isomorphic to Z2, which is too big.
On the other hand, we can compute K ∗(S2 × S1,H]) for the class
H] which is k times a generator of H3 ∼= Z, using the
Atiyah-Hirzebruch Spectral Sequence . The differential is

H0(S2 × S1)
k−→ H3(S2 × S1),

so when k = 1, K ∗(S2 × S1,H]) ∼= K ∗(S3) ∼= Z for both ∗ = 0
and ∗ = 1.
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Axioms for Topological T-Duality

This discussion suggests we should try to develop an
axiomatic treatment of the topological aspects of T-duality.
Note that we are ignoring many things, such as the underlying
metric on spacetime and the auxiliary fields.

Axioms:

We have a suitable class of spacetimes X each equipped with a
principal S1-bundle X → Z . (X might be required to be a
smooth connected manifold.)
For each X , we assume we are free to choose any H-flux
H ∈ H3(X ,Z).
There is an involution (map of period 2) (X ,H) 7→ (X ],H])
keeping the base Z fixed.
K∗(X ,H) ∼= K∗+1(X ],H]).
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The Bunke-Schick Construction

Bunke and Schick suggested constructing a theory satisfying these
axioms by means of a universal example. It is known that (for
reasonable spaces X , say CW complexes) all principal S1-bundles
X → Z come by pull-back from a diagram

X

��

// ES1 ' ∗

��
Z // BS1 ' K (Z, 2)

Here the map Z // K (Z, 2) is unique up to homotopy, and

pulls the canonical class in H2(K (Z, 2),Z) back to c1 of the
bundle.
Similarly, every class H ∈ H3(X ,Z) comes by pull-back from a

canonical class via a map X // K (Z, 3) unique up to
homotopy.
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The Gysin Sequence

For future use, let’s review a classical theorem from algebraic
topology.

Theorem (Gysin sequence)

Let X
p−→ Z be a principal S1-bundle over a path-connected base Z

with Chern class c ∈ H2(Z ,Z). Then the cohomology groups of X
and Z are related by a long exact Gysin sequence

· · · → Hk(Z ,Z)
∪c−→ Hk+2(Z ,Z)

p∗
−→ Hk+2(X ,Z)

p!−→ Hk+1(Z ,Z)
∪c−→ Hk+3(Z ,Z) → · · · . (12)
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The Bunke-Schick Theorem

Theorem (Bunke-Schick)

There is a classifying space R, unique up to homotopy equivalence, with
a fibration K (Z, 3) // R

��
K (Z, 2)× K (Z, 2),

(13)

and any (X ,H) → Z as in the axioms comes by a pull-back

X

��

// E

p

��
Z // R,

with the horizontal maps unique up to homotopy and H pulled back from
a canonical class h ∈ H3(E ,Z).
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The Bunke-Schick Theorem (cont’d)

Theorem (Bunke-Schick)

Furthermore, the k-invariant of the Postnikov tower (13)
characterizing R is the cup-product in

H4(K (Z, 2)× K (Z, 2),Z)

of the two canonical classes in H2. The space E in the fibration

S1 // E

p

��
R

has the homotopy type of K (Z, 3)× K (Z, 2).
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Sketch of Proof of the Bunke-Schick Theorem

Let E be the free loop space

E = ΛK (Z, 3) = Map(S1,K (Z, 3)),

on which S1 acts by rotating the domain S1. The “Borel
construction” gives a fibration

E
p // R = ES1 ×S1 E

c

��
BS1 = K (Z, 2).

(14)

We can think of c as the Chern class of a circle bundle

S1 // E

p

��
R.

(15)
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Sketch of Proof of the Bunke-Schick Theorem (cont’d)

The free loop space comes with a fibration

ΩK (Z, 3) = K (Z, 2) // E = ΛK (Z, 3)

e

��
K (Z, 3),

where ΩK (Z, 3) is the based loop space and e is evaluation of
loops at 1 ∈ S1. Since e has a section, given by constant loops,
E ' K (Z, 2)× K (Z, 3) and we have a canonical class
h ∈ H3(E ,Z) (associated to the map e).

We just need to check that E and R have the right properties.

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



Topological T-Duality
The Bunke-Schick Construction

Sketch of Proof of the Bunke-Schick Theorem (cont’d)

Given a pair (X ,H) over a base Z , we have a map Z // BS1

classifying X → Z . This comes from an S1-equivariant map

X
S1
// ES1 . We also have a map X // K (Z, 3) classifying

H. View this as an equivariant map X
S1
// ΛK (Z, 3) and take

the product to get a commuting diagram

X

��

// ES1 × E ' E
p
��

Z // R.

It’s easy to see that this identifies (X ,H) → Z with the pull-back

of (E , h)
p−→ R.
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The Homotopy Type of R

From the fibration

E
p // R

c��
K (Z, 2)

and the fact that E ' K (Z, 2)× K (Z, 3), we see π2(R) ∼= Z2 and
π3(R) ∼= Z. (One can also see this by computing the set of pairs
(X ,H) living over Sn for each n.) So Postnikov theory gives a
fibration of the form (13). This fibration is pulled back from the
universal K (Z, 3) fibration

K (Z, 3) = ΩK (Z, 4) // pt

��
K (Z, 4)

by the k-invariant K (Z, 2)2 → K (Z, 4).
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The Homotopy Type of R (cont’d)

If the k-invariant were trivial, we’d have R ' K (Z, 2)2 × K (Z, 3),
which would be impossible, since it would imply the H-flux H on X
is always the pull-back of a class in H3(Z ,Z), which contradicts
the Gysin sequence.
On the other hand, the k-invariant is certainly trivial on one of the
copies of K (Z, 2), because the composite

K (Z, 2)
inj. of one summand−−−−−−−−−−−−→ E ' K (Z, 2)× K (Z, 3) → R

splits one of the maps R → K (Z, 2). The fact that the k-invariant
has to be the product of the two canonical classes in H2 follows
from the Gysin sequence applied to the circle bundle (15).
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Topological T-Duality, Revisited

Now we can see how topological T-duality arises. R has a
homotopy automorphism of period 2 that comes from
interchanging the two copies of K (Z, 2) in (13). (That’s OK since
the k-invariant is symmetric.)

In terms of the fibration S1 // E
c��

R

, the first copy of K (Z, 2) is

the Chern class of c , and the second copy comes from c!(h), where
c! : H3(E ) → H2(R) is the Gysin map or “integration along the
fiber.” So T-duality interchanges these two. We will see this from
another point of view later.
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The Case of S2 × S1 and S3, Revisited

We conclude this lecture with the case of S2 × S1 and S3 again.
Let α ∈ H2(S2), β ∈ H1(S1) be the usual generators. Look at the
diagram

(X ,H) = (S3, 0)
p

&&MMMMMMMMMMMM
(X ],H]) = (S2 × S1, α× β)

p]

uullllllllllllllll

Z

We have c1(p) = (p])!(H
]) = α, c1(p

]) = p!(H) = 0. So indeed
T-duality interchanges

c1(p) ↔ (p])!(H
]), c1(p

]) ↔ p!(H).
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Strategy of the Proof
Group Actions

What’s Coming Next?

In the last lecture, we proposed a set of axioms for topological
T-duality, and showed via the Bunke-Schick Theorem that
there is an essentially unique way of satisfying the first three
axioms.

The problem is to check the final axiom about preservation of
twisted K -theory under duality.

In this lecture, we will use the K -theory of crossed products to
verify the last axiom.

In this way, we will arrive at a surprising unification of the
three areas of topology, C ∗-algebras, and string duality.
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Strategy of the Proof
Group Actions

Strategy of the Method

Suppose X is a spacetime manifold which is a principal S1-bundle
over Z . Then we have a free action of S1 on X , and thus an action
T → Aut C0(X ). In order to use Connes’ Thom Isomorphism
Theorem, we lift this action to the universal cover R of T and think
of it as an action α : R → Aut(C0(X )) which is trivial on Z. Form
the crossed product A = C0(X ) oα R. By Connes’ Theorem, we
have K∗+1(A) ∼= K∗(C0(X )) ∼= K ∗(X ). Now suppose we knew for
some reason that A is a continuous-trace algebra over some space
X ], with Dixmier-Douady invariant H], and suppose we knew that
X ] was also a principal S1-bundle over Z . Then we’d have

K ∗+1(X ],H]) ∼= K ∗(X ),

which is the final T-duality axiom, assuming (X ],H]) is T-dual to
(X , 0). Quite magically, this turns out to work!
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Higher-Dimemensional T-Duality via Crossed Products

Strategy of the Proof
Group Actions

Automorphisms of CT-Algebras

Actually, there is an advantage to working even more
generally, since if the H-flux on X is non-zero, we will need an
action of R on the stable CT-algebra with spectrum X and
Dixmier-Douady invariant H, since the K -theory of this
algebra is K ∗(X ,H).

So we need to understand the structure of Aut CT (X ,H) (as
a topological group) and actions of R on CT (X ,H).

Every ∗-automorphism of K(H) is induced by a unitary, so
AutK ∼= PU(H).

There is an obvious map σ : Aut CT (X ,H) → Homeo(X )
gotten by sending an automorphism to the induced action on
the spectrum.
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Strategy of the Proof
Group Actions

The Phillips-Raeburn Theorem

Theorem (Phillips-Raeburn)

Let A be a stable CT-algebra with spectrum X and
Dixmier-Douady invariant H. Then the image of the map
σ : Aut CT (X ,H) → Homeo(X ) is precisely the stabilizer of
H ∈ H3(X ,Z). Let AutX CT (X ,H) = ker σ. Then there is a
natural short exact sequence

1 → Inn CT (X ,H) → AutX CT (X ,H)
ρ−→ H2(X ,Z) → 0.

Here Inn CT (X ,H) is the group of automorphisms implemented by
unitary multipliers. These are precisely the automorphisms exterior
equivalent to the identity.
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Strategy of the Proof
Group Actions

Actions on CT-Algebras

We can think of the Phillips-Raeburn Theorem as a structure
theorem for actions α of Z on CT (X ,H), modulo exterior
equivalence. For example, set of equivalence classes of actions
of Z on C0(X ,K) can be identified with

H2(X ,Z) o Homeo(X ).

The H2(X ,Z) arises as [X ,AutK = PU ' K (Z, 2)]. ρ(α) can
be identified with the Chern class of the circle bundle(
CT (X ,H) oα Z

)̂
→ X .

For our purposes we need a similar structure theorem for
actions of R on CT (X ,H), modulo exterior equivalence.
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Strategy of the Proof
Group Actions

Actions of R on CT-Algebras

Lemma (Lifting)

Suppose one is given an action α of R on a (2nd countable) locally
compact space X (of the homotopy type of a finite CW complex).
Let A be a stable CT-algebra with spectrum X. Then α lifts to an
action α̃ of R on A, and the lifted action is unique up to exterior
equivalence.

Idea of Proof.

A corresponds to a locally trivial principal PU-bundle over X . So
the problem is to lift an action on the base of such a bundle to an
action on the bundle. Suppose for simplicity that X , the bundle,
and the R-action are smooth. Then we need to lift a vector field on
the base to a “horizontal” vector field on the bundle, and a choice
of a connection is precisely what is needed for this. Analysis of the
number of ways to do this gives the uniqueness statement.
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The Raeburn-Rosenberg Theorem

Theorem (Raeburn-Rosenberg)

Let X be a (2nd countable) locally compact space (of the
homotopy type of a finite CW complex). Suppose X is the total
space of a principal S1-bundle p : X → Z, and suppose
H ∈ H3(X ,Z). Let A = CT (X ,H). Lift the free action of
T = R/Z on X to a locally free action of R on X , and then to an
action α of R on A using the Lifting Lemma. Let B = A oα R.
Then B is also a stable CT-algebra, with spectrum X ] the total
space of another principal S1-bundle p] : X ] → Z. The bundles
and Dixmier-Douady classes are related by

c1(p) = (p])!(H
]) and c1(p

]) = (p)!(H). (16)

The algebra B obα R is isomorphic to A again.
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The Raeburn-Rosenberg Theorem (cont’d)

Theorem (Raeburn-Rosenberg)

In fact, if Y is the spectrum of A oα|Z Z, or equivalently, of
B obα|Z Z, there is a commuting diagram of principal S1-bundles

Y
(p])∗p

~~}}
}}

}}
}

p∗(p])

��?
??

??
??

?

X ]

p]

  A
AA

AA
AA

A X
p

����
��

��
��

Z .

(17)
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An Approach to Higher-Dimensional T-Duality

Next we consider T-duality to the case of spacetimes X
“compactified on a higher-dimensional torus,” using the
C ∗-algebraic method discussed above. Again we start with a
principal Tn-bundle p : X → Z and an “H-flux” H ∈ H3(X ,Z).
We need to assume that H is trivial when restricted to each
Tn-fiber of p. This of course is no restriction if n = 2.
Proceeding as before, we want to lift the free action of Tn on X to
an action on the continuous-trace algebra A = CT (X ,H). Usually
there is no hope to get such a lifting for Tn itself, so we go to the
universal covering group Rn. If Rn acts on A so that the induced
action on Â is trivial on Zn and factors to the given action of
Tn = Rn/Zn, then we can take the crossed product A o Rn and
use Connes’ Thom Isomorphism Theorem to get an isomorphism
between K ∗+n(X ,H) and K∗(A o Rn).
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Recovering Topological T-Duality

Under favorable circumstances, we can hope that the crossed
product A o Rn will again be a continuous-trace algebra
CT (X ],H]), with p] : X ] → Z a new principal Tn-bundle and with
H] ∈ H3(X ],Z). If we then act on CT (X ],H]) with the dual
action of R̂n, then by Takai Duality and stability, we come back to
where we started. So we have a topological T-duality between
(X ,H) and (X ],H]). Furthermore, we have an isomorphism

K ∗+n(X ,H) ∼= K ∗(X ],H]),

as required for matching of D-brane charges under T-duality.
Two new problems now arise: potential non-uniqueness of the
T-dual and “missing” T-duals. These can be explained either by
non-uniqueness of the lift to an action of Rn on A = CT (X ,H), or
by failure of the crossed product to be a continuous-trace algebra.
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A Crucial Example

Let’s now examine what happens when we try to carry out this
program in one of our “problem cases,” n = 2, Z = S1, X = T 3 (a
trivial T2-bundle over S1), and H the usual generator of H3(T 3).
First we show that there is an action of R2 on CT (X ,H)
compatible with the free action of T2 on X with quotient S1. We
will need the notion of an induced action. We start with an action
α of Z2 on C (S1,K) which is trivial on the spectrum. This is given
by a map Z2 → C (S1,AutK) = C (S1,PU(L2(T))) sending the
two generators of Z2 to the maps

w 7→ multiplication by z ,

w 7→ translation by w .

(These unitaries commute in PU, not in U.)
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A Calculation

Now form A = IndR2

Z2 C (S1,K). This is a C ∗-algebra with
R2-action Indα whose spectrum (as an R2-space) is

IndR2

Z2 S1 = S1 × T2 = X . We can see that A ∼= CT (X ,H) via
“inducing in stages”. Let B = IndR

Z C (S1,K(L2(T))) be the result
of inducing over the first copy of R. It’s clear that
B ∼= C (S1 × T,K). We still have another action of Z on B coming
from the second generator of Z2, and A = IndR

Z B. The action of Z
on B is by means of a map σ : S1 × T → PU(L2(T)) = K (Z, 2),
whose value at (w , z) is the product of multiplication by z with
translation by w . Thus A is a CT-algebra with Dixmier-Douady
invariant [σ]× c = H, where [σ] ∈ H2(S1 × T,Z) is the homotopy
class of σ and c is the usual generator of H1(S1,Z).
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A Calculation (cont’d)

Now that we have an action of R2 on A = CT (X ,H) inducing the
free T2-action on the spectrum X , we can compute the crossed
product to see what the associated “T-dual” is. Since
A = IndR2

Z2 C (S1,K), we can use the Green Imprimitivity Theorem
to see that

A oIndα R2 ∼=
(
C (S1,K) oα Z2

)
⊗K.

The rotation algebra Aθ is the universal C ∗-algebra generated by
unitaries U and V with UV = e2πiθVU. So if we look at the
definition of α, we see that A oIndα R2 is the algebra of sections of
a bundle of algebras over S1, whose fiber over e2πiθ is Aθ ⊗K.
Alternatively, it is Morita equivalent to C ∗(Γ), where Γ is the
discrete Heisenberg group of strictly upper-triangular 3× 3 integral
matrices.
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Noncommutative T-Duals

Put another way, we could argue that we’ve shown that C ∗(Γ) is a
noncommutative T-dual to (T 3,H), both viewed as fibering over
S1. So we have an explanation for the missing T-dual: we couldn’t
find it just in the world of topology alone because it’s
noncommutative.
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Review of S-Duality

Recall from Lecture 1 that S-duality is supposed to be in
conformity with the Montonen-Olive conjecture about an exact
quantum electric-magnetic duality. While it is only conjectural,
there is a fair amount of evidence for it. S-duality applies in several
different situations, but the most important are a self-duality of
type IIB theory and a duality between type I and SO heterotic
theory. In this lecture we will discuss some problems these dualities
present, and possible solutions in some cases.
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S-Duality of Type IIB

First let’s discuss the type IIB theory on a spacetime X . In this
theory, D-branes are even dimensional and D-brane charges live in
K (X ). There are also Ramond-Ramond (RR) fields C0, C2, and C4

whose field strengths are odd dimensional closed forms G1, G3 and
G5 of degrees 1, 3, and 5, with G5 self-dual. The associated
charges live either in odd de Rham cohomology or odd K -theory
K−1(X ). Recall that we also have the Neveu-Schwarz H-flux H,
the field strength of the B-field.
S-duality is supposed to be an SL(2,Z) symmetry that mixes
“electric” and “magnetic” charges, examples of which come from
the fundamental string and the D-string which couple to B and C2,
respectively.
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Puzzle of the 3-Cohomology Classes

Now it makes sense for SL(2,Z) to act on H3(X ,Z)× H3(X ,Z),
and under this action everything in the orbit of the class ([H], [G3])
is a charge in an S-dual theory. In other words, from the point of
view of S-duality, H and G3 play symmetrical roles. However, there
is a peculiarity here: charges are really supposed to live in twisted
K -theory, not de Rham cohomology, and the twist is given by H,
not G3, so there is an inherent asymmetry here. This issue was
studied by Bouwknegt, Evslin, Jurčo, Mathai, and Sati, but hasn’t
been totally settled yet.
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Conjectured Dualities

As we mentioned before, there is believed to be an S-duality
relating type I string theory to one of the heterotic string theories.
There are also various other dualities relating these two theories to
type IIA theory. Putting these together, we expect a
(non-perturbative) duality between type I string theory on T 4 ×R6

and type IIA theory on K3× R6, at least at certain points in the
moduli space.

How can we reconcile this with the principle that brane charges in
type I should take their values in KO, while brane charges in type
IIA should take their values in K−1?

On the face of it, this appears ridiculous:
KO(T 4 × R6) = KO−6(T 4) has lots of 2-torsion, while K ∗(K3) is
all torsion-free and concentrated in even degree.
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KO-Theory of T 4

One side is easy compute. Recall that for any space X ,

KO−j(X × S1) ∼= KO−j(X )⊕ KO−j−1(X ).

Iterating, we get

KO−6(T 4) ∼= KO−6 ⊕ 4KO−7 ⊕ 6KO−8 ⊕ 4KO−9 ⊕ KO−10

∼= Z6 ⊕ (Z/2)4 ⊕ (Z/2) ∼= Z6 ⊕ (Z/2)5.
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K -Theory of the Orbifold Limit of K3

The way we deal with the opposite side of the duality is to recall
that a K3 surface can be obtained by blowing up the point
singularities in T 4/G , where G = Z/2 acting by multiplication by
−1 on R4/Z4. This action is semi-free with 16 fixed points, the
points with all four coordinates equal to 0 or 1

2 mod Z. If fact one
way of deriving the (type I on T 4) ↔ (type IIA on K3) duality
explicitly uses the orbifold T 4/G .

But what group should orbifold brane charges live in? Not just
K ∗(T 4/G ), as this ignores the orbifold structure. One solution
that has been proposed is K ∗

G (T 4), which we computed. However,
as we’ll see, there appears to be a better candidate.
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Cohomology Calculations

Let M be the result of removing an open ball around each G -fixed
point in T 4. This is a compact manifold with boundary on which
G acts freely; let N = M/G . We get a K3 surface back from N by
gluing in 16 copies of the unit disk bundle of the tangent bundle of
S2 (known to physicists as the Eguchi-Hanson space), one along
each RP3 boundary component in ∂N.

Theorem (with S. Mendez-Diez)

H i (N, ∂N) ∼= H4−i (N) ∼=



0, i = 0
Z15, i = 1
Z6, i = 2
(Z/2)5, i = 3
Z, i = 4
0, otherwise.
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K -Theory Calculations

Recall N is the manifold with boundary obtained from T 4/G by
removing an open cone neighborhood of each singular point.

Theorem (with S. Mendez-Diez)

K 0(N, ∂N) ∼= K0(N) ∼= Z7 and
K−1(N, ∂N) ∼= K1(N) ∼= Z15 ⊕ (Z/2)5.

Note that the reduced K -theory of (T 4/G ) mod (singular points)
is the same as K ∗(N, ∂N). Note the resemblance of K−1(N, ∂N)
to KO−6(T 4) ∼= Z6 ⊕ (Z/2)5. While they are not the same, the
calculation suggests that the brane charges in type I string theory
on T 4 × R6 do indeed show up some way in type IIA string theory
on the orbifold limit of K3.
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Equivariant K -Theory Calculations

Again let G = Z/2. Equivariant K -theory K ∗
G is a module over the

representation ring R = R(G ) = Z[t]/(t2 − 1). This ring has two
important prime ideals, I = (t − 1) and J = (t + 1). We have
R/I ∼= R/J ∼= Z, I · J = 0, I + J = (I , 2) = (J, 2),
R/(I + J) = Z/2.

Theorem (with S. Mendez-Diez)

K 0
G (T4) ∼= R8 ⊕ (R/J)8, and K−1

G (T4) = 0. Also,

K 0
G (M, ∂M) ∼= (R/I )7, K−1

G (M, ∂M) ∼= (R/I )10 ⊕ (R/2I )5.
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Discussion

Note that the equivariant K -theory calculation is a refinement of
the ordinary K -theory calculation (since G acts freely on M and
∂M with quotients N and ∂N, so that K ∗

G (M) and K ∗
G (∂M) are

the same as K ∗(N) and K ∗(∂N) as abelian groups, though with
the addition of more structure). While we don’t immediately need
the extra structure, it may prove useful later in matching brane
charges from KO(T 4 × R6) on specific classes of branes.
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Other Cases of Type I/Type II Charge Matching

More generally, one could ask if there are circumstances where
understanding of K -theory leads us to expect the possibility of a
string duality between type I string theory on a spacetime Y and
type II string theory on a spacetime Y ′. For definiteness, we will
assume we are dealing with type IIB on Y ′. (This is no great loss
of generality since as seen in the last lecture, types IIA and IIB are
related via T-duality.) Matching of stable brane D-charges then
leads us to look for an isomorphism of the form

KO∗(Y ) ∼= K ∗(Y ′).

In general, such isomorphisms are quite rare, in part because of
2-torsion in KO−1 and KO−2, and in part because KO-theory is
usually 8-periodic rather than 2-periodic.
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A Conjectural Duality

But there is one notable exception: one knows that

KO ∧ (S0 ∪η e2) ' K ,

where S0 ∪η e2 is the stable cell complex obtained by attaching a
stable 2-cell via the stable 1-stem η. This is stably the same (up to
a degree shift) as CP2, since the attaching map S3 → S2 ∼= CP1

for the top cell of CP2 is the Hopf map, whose stable homotopy
class is η. Thus one might expect a duality between type I string
theory on X 6 ×

(
CP2 r {pt}

)
and type IIB string theory on

X 6 × R4. We plan to look for evidence for this.
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Maldacena’s Idea

The AdS/CFT correspondence or holographic duality is a
conjectured physical duality, proposed by Juan Maldacena, of a
different sort, relating IIB string theory on a 10-dimensional
spacetime manifold to a gauge theory on another space. In the
original version of this duality, the string theory lives on
AdS5 × S5, and the gauge theory is N = 4 super-Yang-Mills
theory on Minkowski space R1,3. Other versions involve slightly
different spaces and gauge theories. Notation:

N is the standard notation for the supersymmetry multiplicity.
In other words, N = 4 means there are 4 sets of supercharges,
and there is a U(4) R-symmetry group acting on them.

AdS5 is (up to coverings) SO(4, 2)/SO(4, 1). Topologically,
it’s R4 × S1. It’s better to pass to the universal cover, so that
time isn’t periodic.
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Nature of the Correspondence

We have already explained that D-branes carry Chan-Paton
bundles. In type IIB string theory, a collection of N coincident D3
branes have 3 + 1 = 4 dimensions and carry a U(N) gauge theory
living on the Chan-Paton bundle. This gauge theory is the
holographic dual of the string theory, and the number N can be
recovered as the flux of the Ramond-Ramond (RR) 5-field G5

through S5. The rotation group SO(6) of R5 is identified with the
SU(4)R symmetry group of the N = 4 gauge theory.

The AdS/CFT correspondence looks like holography in that
physics in the bulk of AdS space is described by a theory of one
less dimension “on the boundary.” This can be explained by the
famous relation between the entropy of a black hole and the area
of its boundary, which in turn forces quantum gravity theories to
obey a holographic principle.
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The Lagrangian for 4D SYM

Recall that the Montonen-Olive Conjecture asserts that classical
electro-magnetic duality should extend to an exact symmetry of
certain quantum field theories. 4-dimensional super-Yang-Mills
(SYM) with N = 4 supersymmetry is believed to be a case for
which this conjecture applies. The Lagrangian involves the usual
Yang-Mills term

−1

4g2
YM

∫
Tr(F ∧ ∗F )

and the theta angle term (related to the Pontrjagin number or
instanton number)

θ

32π2

∫
Tr(F ∧ F ).

We combine these by introducing the tau parameter

τ =
4πi

g2
YM

+
θ

2π
.
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Charges in 4D SYM

The tau parameter measures the relative size of “magnetic” and
“electric charges.” Dyons (particles with mixed electric/magnetic
charge) in SYM have charges (m, n) living in the group Z2; the
associated complex charge is q + ig = q0(m + nτ). The
electro-magnetic duality group SL(2,Z) acts on τ by linear
fractional transformations. More precisely, it is generated by two
transformations: T : τ 7→ τ + 1, which just increases the θ-angle
by 2π, and has no effect on magnetic charges, and by S : τ 7→ − 1

τ ,
which effectively interchanges electric and magnetic charge. By the
Montonen-Olive conjecture, the same group SL(2,Z) should
operate on type IIB string theory in a similar way, and θ should
correspond in the string theory to the expectation value of the RR
scalar field C0.
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AdS5 × S5 and SYM

Let X = R5 × S5, where R5 is the universal cover of AdS5. We think of
R5 more exactly as R4 × R+, so that R4 × {0}, Minkowski space, is “at
the boundary.” Then we want to compare the K -theoretic charge groups
for type IIB string theory on X and for N = 4 SYM on R4. The RR field
charges should live in K−1(X ), but we see this requires clarification: the
RR field G5 should represent the number N in H5(S5), so we need to use
homotopy theoretic K -theory Kh here instead of K -theory with compact
support, which we’ve implicitly been using before. Indeed, note that
K−1(X ) ∼= K−1(R5)⊗ K 0(S5) ∼= H0(S5), while
K−1

h (X ) ∼= K 0
h (R5)⊗ K−1(S5) ∼= H5(S5), which is what we want.

Now what about the D-brane charge group for the string theory? This

should be Z ∼= K 0(X ) ∼= K 0(R4 × Y ) ∼= K 0(R4)⊗ K 0(Y ), where Y is

the D5-brane R× S5, which has K 0(Y ) ∼= Z. Note that this is naturally

isomorphic to K 0(R4) = K̂ 0(S4), which is where the instanton number

lives in the dual gauge theory. But what charge group on X corresponds

to the group of electric and magnetic charges in the gauge theory?
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Lens Spaces

It is believed that the string/gauge correspondence should apply
much more generally, to many type IIB string theories on spaces
other than AdS5 × S5, and to gauge theories with less
supersymmetry than the N = 4 theory that we’ve been
considering. In particular, given a representation of a cyclic group
Z/k → SU(3), say with k an odd prime, Z/k acts on S5 ⊂ C3,
without fixed points unless the representation contains the trivial
representation, and the quotient is a lens space L5. Many different
lens spaces can arise, even with the same k! And it is believed
[Morrison-Plesser] that one has an AdS/CFT correspondence
between type IIB string theory on AdS5 × L5 and an N = 1 SYM
theory on R4, this time for the group U(N)k . The rank nk of the
gauge group can be explained since 〈[G5], [L

5]〉 = N, so Nk is the
pairing of (the lift of) G5 with [S5], S5 the k-fold cover of L5.

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



The AdS/CFT Correspondence
Matching of Charges

K -Theory for Lens Spaces

For a lens space L5 with fundamental group Z/k, the K -groups are
K−1(L) ∼= Z and K 0(L) ∼= Z⊕ T , where the torsion group T has
order k2 but may or may not be cyclic, depending on k and the
specific lens space chosen. As in the last example, the class [G5]
should live in a group identifiable with H5(L) or K−1(L), which is
naturally isomorphic to K−1

h (R5 × L5), not to K−1(R5 × L5) (with
compact support). So we’re led to a question: when the spacetime
has the form R4 × Y , should the D-brane charges should really live
in K 0(R4 × Y ) ∼= K 0(Y ), or maybe in K 0

h (Y )?
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K -Theory for Lens Spaces (cont’d)

In our case, Y = R× L5 is noncompact (unlike the more typical
case where Y is a compact Calabi-Yau 3-fold). So
K 0(Y ) ∼= K−1(L) doesn’t see the torsion in K ∗(L), but
K 0

h (Y ) ∼= K 0(L) does. So one is led to an interesting physics
question: in this example, do we expect to see D-brane charge
groups with torsion? If so, they should also show up in the dual
conformal gauge theory. There is a possibility, hinted at in the work
of Morrison-Plesser, that this could happen because of symmetry
breaking and an anomaly cancellation condition. If so, then the
distinction between the cases k = 3 (and the standard lens space
coming from the action of e2πi/3 by scalar multiplication) and
k ≥ 5 (where the K -group is cyclic) is especially interesting.
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Calculations in KR-Theory

Real Spaces and Bundles

Definition (Atiyah)

A Real space is a locally compact space X with an involution
ι : X → X (so ι2 = 1). A Real vector bundle on such a space is a

complex vector bundle E
p−→ X with a conjugate-linear involution ¯

such that ¯ : Ex → Eι(x).

Example

Any locally compact space X is a Real space with the trivial
involution. A Real vector bundle on X is then the
complexification of a real vector bundle, with ¯ = complex
conjugation. R with the trivial involution will be denoted R1,0.

The real line R is a Real space under the involution
ι(x) = −x . This space is hereafter denoted R0,1. We let
Rp,q =

(
R1,0

)p ⊕ (R0,1
)q

.
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Calculations in KR-Theory

KR-Theory

Definition (Atiyah)

If (X , ι) is a compact Real space, KR(X ) denotes the
Grothendieck group of equivalence classes of Real vector bundles
on X . Note that if ι is trivial, this is just KO(X ). KR is extended
to locally compact spaces as usual: let X+ be the one-point
compactification, with ι extended to fix the point at infinity, and
let KR(X ) = ker (KR(X+) → KO(pt)). The usual proof shows
that this extends to a cohomology theory KR∗, with
KR−j(X ) = KO(X × Rj ,0).

Theorem (Atiyah)

KR(R1,1) = K̃R(CP1) ∼= Z, with generator the usual Bott element
β. (Here the involution on CP1 is complex conjugation.)
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Calculations in KR-Theory

Bott Periodicity

In fact for any Real space X , KR(X ) ∼= KR(X × R1,1) via external
product with β. Thus we can define KRp,q(X ) = KR(X × Rp,q),
and this only depends on p − q. In other words, we can think of
R0,1 as R−1! Since KR(Rp,0) ∼= KOp, the groups KR∗(X ) are
periodic with period 8. One other case deserves special mention.
If X is any locally compact space and with give X q X the
involution interchanging the two factors, then any complex vector
bundle on X extends uniquely to a Real vector bundle on X q X .
Thus KR∗(X q X ,

��
^^ ) ∼= K ∗(X ). Let Sp,q be the unit sphere in

Rp,q. Note that this is topologically Sp+q−1 (with an involution).
S0,2 is S1 with the antipodal map, and S1,1 is the one-point
compactification of R0,1.
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Special cases

Theorem (Karoubi-Weibel)

If the involution ι on X is free, then KR∗(X ) is periodic of period
4.

Theorem (Atiyah)

For any Real space X , KR∗(X × S0,1) ∼= K ∗(X ), and
KR∗(X × S0,2) ∼= KSC ∗(X ), the self-conjugate K-theory of Donald
Anderson and Paul Green. This has coefficient groups

KSC−j ∼=


Z, j ≡ 0 or 3 mod 4,

Z/2, j ≡ 1 mod 4,

0, j ≡ 2 mod 4.
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Holomorphic Involutions

In the last lecture, we will be especially interested in the case where
X is a 2-torus with a complex structure, that is, an elliptic curve,
and ι is either a holomorphic or an antiholomorphic involution. We
start with the case of holomorphic involutions. We can assume
X = C/Λ, where Λ = Z + Zτ , τ ∈ h (the upper half-plane).

Theorem (Classical)

Let X = C/Λ, Λ = Z + Zτ . If ι is a holomorphic involution of X
and ι is not the identity, then either ι(z) = z + δ, with 2δ ∈ Λ, or
else ι(z) = −z + δ, with δ arbitrary (in a fundamental domain). In
the first case, there are no fixed points. In the second case,
X ι = {z ∈ C : z ≡ δ/2 mod Λ}/Λ consists of 4 points.
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Calculations in KR-Theory

Antiholomorphic Involutions

Theorem (Classical)

Let X = C/Λ, Λ = Z + Zτ . If ι is an antiholomorphic involution of
X , then ι is of the form z 7→ αz̄ + β and X ι is a disjoint union of
either 0, 1, or 2 circles. In these three cases, X/ι is topologically a
Klein bottle, a Möbius strip, or an annulus. An elliptic curve X
admits an antiholomorphic involution if and only if the j-invariant
of X is real.

Remark: The j-invariant does not by itself determine the
antiholomorphic involution. The moduli space of these involutions
has two connected components.
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Calculations in KR-Theory

Topological Types

We can summarize the topological types of involutions on elliptic
curves as follows:

Each holomorphic involution of an elliptic curve X is
topologically conjugate to exactly one of the following: the
identity, S0,2 × S2,0 (free action), or S1,1 × S1,1 (four fixed
points).

Each antiholomorphic involution of an elliptic curve X is
topologically conjugate to exactly one of the following:
S1,1 × S2,0 (species 2); S1,1 × S0,2 (species 0); or an
involution with one fixed circle where the action on the
complement of this circle is free and orientation-reversing,
with quotient an open Möbius strip (species 1).
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Calculations in KR-Theory

Connections with Real Algebraic Geometry

There is an interesting connection between antiholomorphic
involutions on elliptic curves and real algebraic geometry. An
elliptic curve together with an antiholomorphic involution ι is
equivalent to an elliptic curve (a smooth projective curve of genus
1) defined over R. The number of connected components of the
set of real points is called the species s.

Theorem (Harnack, 1876)

Let C be a smooth curve of genus g defined over R. Then the set
of real points C (R) is a disjoint union of s circles, where
0 ≤ s ≤ g + 1. Any of these values can occur.

This of course explains why we have 3 topological types of
antiholomorphic involutions.
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The Karoubi-Weibel Theorem

Karoubi and Weibel [2003] observed that if X is a quasi-projective variety

defined over R, then X (C), together with the involution ι defined by

complex conjugation, becomes a Real space, and thus one gets natural

maps Kn(X ) → KR−n(X (C), ι). Here Kn(X ) is algebraic K -theory.

Theorem (Karoubi-Weibel)

If X is a smooth variety defined over R, then
Kn(X ; Z/2ν) → KR−n(X (C), ι; Z/2ν) is an isomorphism on
K-theory with coefficients in Z/2ν for n ≥ dim X.

Theorem (Pedrini-Weibel)

If X is a smooth curve defined over R, then Kn(X ) is the direct
sum of a divisible group and an elementary abelian 2-group for
n 6= 0, and the torsion in Kn(X ) is 8-periodic (4-periodic if
X (R) = ∅) and explicitly computed.
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Calculations in KR-Theory

The Basic Problem

For applications which will come in the last lecture, we now want
to compute the KR groups for all Real spaces which can be made
out of elliptic curves X with a holomorphic or antiholomorphic
involution. It’s convenient to add the cases of
(X q X , (z ,w) ↔ (w , z)) and (X q X̄ , (z , w̄) ↔ (w , z̄)). We only
need to consider one representative for each topological type.

Holomorphic Involutions

Real Space K -Theory

X q X K ∗(T 2)

S2,0 × S2,0 KO∗(T 2)

S0,2 × S2,0 KSC ∗(S1) ∼= KSC ∗ ⊕ KSC ∗−1

S1,1 × S1,1 KO∗+2(T 2)

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



Atiyah’s KR-Theory
Involutions on Elliptic Curves

Calculations in KR-Theory

The Antiholomorphic Case

We can make a similar table for the antiholomorphic involutions.

Antiholomorphic Involutions

Real Space Species K -Theory

X q X̄ K ∗(T 2)

S1,1 × S0,2 0 KSC ∗(S1,1) ∼= KSC ∗ ⊕ KSC ∗+1

S1,1 × S2,0 2 KO∗+1(T 2)

1 complicated, see below
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The Hard Case: Species 1

This analysis leaves us with one hard case that can’t be done by
“inspection,” the case of antiholomorphic involutions of species 1.
The reason is that there is no involution on S1 with only one fixed
point, so there is no way to decompose a species 1 involution as a
product of two 1-dimensional Real spaces.

Lemma

Let X be T 2 with an orientation-reversing involution ι of species 1.
Then there is a long exact sequence

· · · → KO j−2 δ−→ KSC j+1 →

K̃R
j
(X , ι) → KO j−1 δ−→ KSC j+2 → · · · . (18)
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The Hard Case: Calculation

Proof.

Use the fact that X ι ∼= S2,0 and X r X ι ∼= S0,2 × R0,1.

This does not completely determine all the groups. To finish the
calculation, we need to use Karoubi-Weibel and Weibel-Pedrini
applied to K -theory with Z/2 coefficients to pin down the
2-primary torsion using the commuting diagrams

0 // Kn(X )/2 //

��

Kn(X ; Z/2) //

∼=
��

2Kn−1(X ) //

��

0

0 // KR−n(X )/2 // KR−n(X ; Z/2) //
2KR1−n(X ) // 0.
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Parity Operators

There are several parity operators that are important in string
theory:

the worldsheet parity operator Ω, that reverses orientation on
the string worldsheet Σ;

the spacetime parity operator I, an involutive
self-homeomorphism of spacetime X ;

the left worldsheet fermion parity operator (−1)FL , that
counts the number of left-moving fermions mod 2.

The GSO (Gliozzi-Scherk-Olive) projection onto states with
(−1)FL = −1 is designed to get rid of the tachyon, which has
(−1)FL = +1. It has the effect of writing type I string theory as a
“quotient” of type IIB theory.
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Orientifolds

These parity operators suggest the idea of an orientifold theory.
Basically, we require spacetime X to be equipped with an
involution ι, and instead of considering all maps Σ → X from the
worldsheet to X , we use only equivariant maps

(Σ,Ω) → (X , ι).

We’ll be especially interested in type II theories where
X = Y 2n × R10−2n and (in order to preserve a lot of
supersymmetry) Y is a complex manifold of complex dimension
n = 1, 2, or 3 with a globally non-vanishing holomorphic n-form
(the Calabi-Yau condition). We assume the involution ι is trivial
on the flat “physical” spacetime R10−2n but can be nontrivial on
Y . There are two main subcases:

anti-holomorphic involutions, type IIA;

holomorphic involutions, type IIB.
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Disconnected Orientifolds

There is one subcase of this framework where spacetime has two
connected components, and we replace Y by either Y q Y with
involution (z ,w) ↔ (w , z) or by Y q Ȳ with involution
(z , w̄) ↔ (w , z̄). These cases are actually equivalent to traditional
type IIA and type IIB string theory on Y , since an equivariant map
from the worldsheet requires the worldsheet also to be
disconnected, and we might as well look at nonequivariant maps
Σ → Y instead of equivariant maps (Σq Σ) → (Y q Y ), etc.
Thus the orientifold formalism recovers traditional string theory as
a special case.

Jonathan Rosenberg Dualities in Field Theories and the Role of K -Theory



Orientifolds
T-Duality and Applications of KR-Theory

Brane Charges in Orientifold Theories

Just as D-brane charges in usual string theory take their values in
K -theory, the same is true for orientifold theories, except that we
have to take the involution ι into account. The obvious candidate
for doing this is KR∗(X , ι). This is reasonable since the bundles we
want to consider should pull back to bundles on Σ with a
conjugate-linear action compatible with parity reversal Ω.
Note that we have a few interesting special cases. If ι is trivial,
that means our strings really factor through Σ/Ω, i.e., we consider
unoriented strings. This is the type I theory and as we expect, the
brane charges live in KR∗(X , id) = KO∗(X ).
In the case where X has two components and ι interchanges them,
we recover type IIA or type IIB string theory, and charges live in
KR∗(X q X ) ∼= K ∗(X ), as expected.
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Elliptic Curve Orientifolds

All the material from now on is joint work with Chuck Doran and
Stefan Mendez-Diez. We will be studying orbifold string theories
on Y 2 × R8, where Y is a torus equipped with a complex
structure, that is an elliptic curve (these are the only compact
Calabi-Yau manifolds in complex dimension 1). We assume the
involution ι is trivial on R8 and holomorphic or antiholomorphic on
the elliptic curve. Since taking a product with R8,0 has no effect
on KR because of Bott periodicity, the charge groups we are
interested in are precisely the KR groups of (Y , ι), which were
computed in the last lecture.
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T-Duality on the Circle

Before getting to T-duality for torus orientifolds, it helps to clarify
how T-duality works when the target space is S1 with an
involution. Aside from the case of S2,0 which was studied in
Lecture 1, we are interested in S1,1 and S0,2.
Let’s suppose (this is the simplest case) that Σ, the string
worldsheet, is S1,1 ×R, where R represents time and the involution
on S1,1 is worldsheet parity reversal Ω.
T-duality is supposed to interchange winding and momentum
modes in the sigma-model. The winding number for z 7→ zn (from
S1 to S1) is n; this mode is always equivariant when the involution
is complex conjugation on both circles (the case of S1,1), but when
the target space is S2,0, only the case n = 0 is equivariant, and
when the target space is S0,2, equivariance means
z̄n = z−n = −zn, so there are no equivariant maps.
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T-Duality on the Circle (cont’d)

Let’s look at this in more detail. When the target space is S1,1, if
z ∈ T and t ∈ R are the coordinates on Σ = S1,1 × R1,0 and
x : Σ → S1,1, then quantization forces x to be periodic in t also,
so x descends to the quotient space S1,1 × S2,0. But equivariance
in the S2,0 means the map is trivial in time, i.e., the momentum is
0. So maps Σ → S1,1 have arbitrary winding but vanishing
momentum.
When we T-duality, winding and momentum are interchanged, so
we have vanishing winding and arbitrary momentum. This is
precisely the situation for S2,0, so the orientifold targets S1,1 and
S2,0 are T-dual to one another. This is reflected in the KR-theory:
KR∗(S1,1) ∼= KO∗ ⊕ KO∗+1, while KR∗(S2,0) ∼= KO∗ ⊕ KO∗−1.
These are the same up to a shift in degree by 1!
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The Types of Elliptic Curve Orientifolds

Now let’s go back and look at the various IIA and IIB elliptic curve
orientifolds; only the topological types are relevant for the
KR-theory. We have the six types

Type Fixed Set Real Space KR Groups

IIB T 2 S2,0 × S2,0 KO∗(T 2)

IIB S0 × S0 S1,1 × S1,1 KO∗+2(T 2)

IIB ∅ S2,0 × S0,2 KSC ∗(S1) ∼= KSC ∗ ⊕ KSC ∗−1

IIA S1 q S1 S1,1 × S2,0 KO∗+1(T 2)

IIA S1 not a product complicated

IIA ∅ S1,1 × S0,2 KSC ∗(S1,1) ∼= KSC ∗ ⊕ KSC ∗+1
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T-Duality of Elliptic Curve Orientifolds

Now using the T-duality between S1,1 and S2,0, we can see how
the various orientifolds are related through T-duality. We get the
following diagram of T-dualities:

IIB IIA

S2,0 × S2,0 oo // S1,1 × S2,0
44

ttiiiiiiiiiiiiii

S1,1 × S1,1 antiholomorphic, species 1KK

S0,2 × S0,2 oo // S1,1 × S0,2

Note the compatibility with the table of KR∗ groups.
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