
Part 0. Motivation

In the paper arXiv:1107.1741, ‘K-homology and index theory on contact

manifolds’, Paul F. Baum and Erik van Erp showed how to construct an

index problem from a sub-elliptic operator using Kasparov theory. (I will

explain in the first part of this talk some aspects of Kasparov theory).

In arXiv:1107.0805 ‘Index theory for locally compact noncommutative ge-

ometries’, my co-authors and I obtained the local index formula for non-

unital algebras in a very general setting without using compact support

type assumptions by exploiting the Kasparovian viewpoint.

1



In arXiv:1004.1582 ‘The index formula and the spectral shift function for

relatively trace class perturbations’, the authors Fritz Gesztesy, Yuri La-

tushkin, Konstantin A. Makarov, Fedor Sukochev, Yuri Tomilov extended

work of Robbin-Salaman on the relationship between spectral flow and the

Fredholm index by incorporating some ideas of Azamov (from his thesis)

and some permutations of Dodds, Sukochev and myself. At this point

Kasparov does not enter.

In arXiv:1110.1472,. ‘Spectral flow and the unbounded Kasparov product’,

by Jens Kaad and Matthias Lesch looked at a situation where Kasparov

theory was brought to bear on a generalisation of the problem in the

previous article.
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So I became interested in whether there was a way to generalise these
ideas to study a more general picture of spectral flow. In this approach
we start with the question of whether there is a notion of spectral flow
between operators that are not Fredholm but which individually represent
unbounded Kasparov classes.

Evidence that this is not completely wrong is that the relation between
spectral flow and the spectral shift function is not exact. The latter ex-
ists in more generality than the former. The question then is whether
Kasparov theory can be used to explain why the spectral shift function
can legitmately be regarded as giving spectral flow when non-Fredholm
operators are involved.

This is not an unreasonable strategy given the work in the previously listed
arXiv papers. We are also interested in whether the so-called Witten index
can be brought into the picture.

Next: explain some of the terminology!
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Part I: Kasparov picture.
(N , τ) denotes a semifinite von Neumann algebra with τ a semifinite normal
faithful trace. KN is the ideal of τ-compact operators in N .

A nonunital Fréchet sub-∗-algebra A of N is called a pre-C∗-algebra if it
is stable under the holomorphic functional calculus. (This means that its
minimal unitalization A∼ := A⊕C is stable under the (ordinary) holomor-
phic functional calculus in the minimal unitalization of its C∗-completion.)

Definition. A nonunital semifinite spectral triple (A,H,D), relative to
(N , τ), is given by a Hilbert space H, a pre-C∗-algebra A ⊂ N acting on
H, and a densely defined unbounded self-adjoint operator D affiliated to
N such that
1) da := [D, a] extends to a bounded operator in N for all a ∈ A,
2) a(1 +D2)−1/2 ∈ K(N , τ) for all a ∈ A

(A,H,D) is even if there is a Z2-grading such that A is even and D is odd.
Otherwise we say that (A,H,D) is odd.
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Note. ‘Nonunital’ here means that (1 +D2)−1 is not compact and that if
A has a unit it is not the unit of N .

The Kasparov class of a spectral triple
Essentially known from Kaad, Nest and Rennie (2008) (related to older
results of Connes-Cuntz (1987)).

Let (A,H,D be a nonunital semifinite spectral triple relative to (N , τ). Set
FD = D(1 + D2)−1/2. Then for all a ∈ A and ϕ ∈ C0(R), [FD, a], aϕ(D).
are τ-compact.

KN as a right KN C∗-module via (b1|b2) := b∗1b2, left multiplication by FD
on KN gives FD ∈ EndKN (KN ).

Left multiplication by a ∈ A, the C∗-completion of A, gives a representation
of A as adjointable endomorphisms of KN

[FD, a] ∈ KN = End0
KN (KN ), the compact endomorphisms, for all a ∈ A.
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Since a(F2
D−1) ∈ KN and FD = F ∗D by construction, we obtain a Kasparov

module (A(KN )KN , FD) with class [(KN , FD)] ∈ KKj(A,KN ), where j is 0

iff our spectral triple was Z2-graded.

Using the Kasparov product we now have a well-defined map

· ⊗A [(KN , FD)] : Kj(A)→ K0(KN )

Write X for the Kasparov module (A(KN )KN , FD). Assume we choose a

representative of the class of this Kasparov module with F2 = 1.

Represent elements a+ λIdA∼ on X as a+ λIdX, λ ∈ C.

Even case:

Suppose that e and f are projections in a (matrix algebra over the minimal

unitization A∼) and suppose also that we have a class [e]− [f ] ∈ K0(A).
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Let F+ = 1
4(1− γ)F (1 + γ), then eF+e : e1+γ

2 X → e1−γ
2 X is Fredholm,

[Index(eF+e)]− [Index(fF+f)]

= [ker eF+e]− [coker eF+e]− [ker fF+f ] + [coker fF+f ],

and the individual terms are the classes of finite projective KN modules.

The odd case:

[u]⊗A [(X,F )] = [Index(
1 + F

2
u

1 + F

2
−

1− F
2

)] ∈ K0(KN ),

where [u] ∈ K1(A). Writing (1 +F )/2 = P for the positive spectral projec-

tion of F , we have

[u]⊗A [(X,F )] = [Index(PuP )] ∈ K0(KN ),

and both kerPuP and cokerPuP are finite projective KN -modules.
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Problem For non-type I semifinite von Neumann algebras the compacts

are not countably generated (a fundamental assumption for Kasparov mod-

ules).

The solution is to restrict to separable algebras A and replace the compacts

by a countably generated subalgebra constructed from commutators of A
with FD.

Specifically we need all operators of the form

[FD, a], FD[FD, a], b[FD, a], FDb[FD, a], aφ(D)

where φ is continuous of compact support. These generate an algebra

which forms a bimodule of the right kind.
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Fredholm modules
A semifinite Fredholm module for a ∗-algebra A relative to (N , τ) is a pair
(H, F ) where A is (continuously) represented in N and F is a self-adjoint
operator in N satisfying:
1. a(1− F2) ∈ KN , and 2. [F, a] ∈ KN for a ∈ A.

Summability:
if [F, a] ∈ Lp+1(N , τ) for a ∈ A, we say that (H, F ) is p+ 1-summable. The
spectral dimension of such a module is the infimum of those n such that
[F, a] ∈ Ln(N , τ) for all a ∈ A.

In the spectral triple version this is the requirement a(1+D2)−s/2 ∈ L1(N , τ)
for all s > p and p (the spectral dimension) is the infimum of such s.

Lemma. Given a semifinite finitely summable spectral triple (A,H,D),
with spectral dimension p, then setting FD := D(1 + D2)−1/2 yields, a
semifinite bpc+ 1-summable Fredholm module for A.
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Given a Fredholm module (H, F ) relative to (N , τ) we have a Kasparov

module (KN , FD) and the following diagram commutes

(A,H,D) → (KN , FD)
↓ ↗

(H, F )
.

Next: a trick due to Alain Connes gives a representative of this class with

F2 = 1.

For any µ > 0, define the ‘double’ of (A,H,D) to be (A,H2,Dµ,M2(N ), τ ⊗
Tr2), with H2 = H⊕H and the action of A and Dµ given by

Dµ :=

(
D µ
µ −D

)
, a 7→

(
a 0
0 0

)
, ∀a ∈ A.

If (A,H,D) is even and graded by γ then the double is even and graded by

γ ⊕−γ. Dµ is invertible, and Fµ = Dµ|Dµ|−1 has square 1.
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Lemma. The KK-classes associated with (A,H,D) and (A,H2,Dµ) coin-
cide. A representative of this class is (K2

N , Fµ) with Fµ = Dµ|Dµ|−1.

The spectral dimension p is the same for the double.

The K0(KN )-valued index pairings defined by the two spectral triples and
the semifinite Fredholm module all agree: for x ∈ K∗(A) of the appropriate
parity and µ > 0,

x⊗A [(A,H,D)] = x⊗A
[(
A,H2,Dµ,M2(N ), τ ⊗Tr2

)]
= x⊗A [(K2

N , Fµ)] .

The τ-finite operators FN ⊂ KN are stable under the holomorphic func-
tional calculus, and so K0(KN ) = K0(FN ). Thus we can always rep-
resent elements of K0(KN ) by classes [e] − [f ] with e, f ∈ F∼N where ∼
denotes the one-point unitization. The trace τ defines a homomorphism
τ∗ : K0(KN )→ R and the numerical index from the Fredholm module.
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So we may define a numerical index pairing from a spectral triple (A,H,D)

as follows:

1) Take the Kasparov product with the KK-class defined by the double

spectral triple

· ⊗A [(K2
N , Fµ)] : Kj(A)→ K0(KN ),

2) Apply the homomorphism τ∗ : K0(KN )→ R to the resulting class.

We will denote this pairing by

〈x, (A,H,D)〉 ∈ R, x ∈ Kj(A).
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Let u ∈ Mn(A∼) be a unitary. We remark firstly that, since Dµ is invert-
ible, the spectral flow from Dµ ⊗ 1n to û(Dµ ⊗ 1n)û∗, written abusively
sf(D, uDu∗), is well defined.

Here

u 7→ û =

(
u 0
0 1

)
,

in the double.

This is because Dµ is Fredholm (as it is invertible) and then by work of
Phillips et al sf(D, uDu∗) is the index of PµûPµ which may be shown to be
the index of PuP where Pµ = χ[0,∞)(Dµ), P = χ[0,∞)(D),

It seems this double trick is not such a good plan when we want to study
the Witten index using Kasparov modules. (NB the idea that this can be
done is at the moment just a conjecture).
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Conjectured approach

We are interested in defining spectral flow between unbounded operators

D and D + A where A is bounded and A(1 + D2)−1/2 is compact. This

is compatible with the Kasparov module picture. Note that we use the

straight line path D+ tA for t ∈ [0,1].

Now we do not know that either FD or FD+A are Fredholm but we do know

that their difference is compact appealing to a lemma from our previous

work (all this is evolving from discussions between myself, Gayral, Phillips,

Rennie and Sukochev).

So they are equal in the Calkin algebra N/Kτ .
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Question. Let 1 = P0+P>+P< be the decomposition of the identity into

positve negative and kernel projections for FD. Similarly 1 = Q0 +Q>+Q<

for FD+A. Then are there checkable conditions such that P0,+P> Q0+Q>

are norm close when projected into the Calkin algebra?

Following earlier work of Phillips we would define spectral for the path

above as the index of PQ as an operator from QH tp PH where P = P0+P>

and Q = Q0 +Q>.

Problem is to justify this definition in terms of what is normally understood

about spectral flow.

(i) Everything is consistent with the case of ‘unitarily equivalent endpoints’.
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Potential additional checks

Can we extend existing formulas for spectral flow to this situation?

For example find a formula in terms of the spectral shift function.

Does it help with the Witten index problem in the non-Fredholm case?

The ‘problem’ is that the Witten index is not an integer in this case.

Note that the Witten index arises in the even case of Kasparov modules

and one passes from the spectral flow problem to the Witten index by a

kind of suspension process.
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However the Witten index question is known to be problematic from work

on APS problems on a cylinder.

In fact Lesch has suggested that the Witten index is an ‘interior’ contribu-

tion to the true Fredholm index and that there is a contribution from eta

type terms on the boundary at infinity on the cylinder.
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