Norm-square localization for Hamiltonian \(LG \)-spaces

Yiannis Loizides
University of Toronto
Workshop on Geometric Quantization
Adelaide, July 2015
Norm-square localization for Hamiltonian G-spaces

- M Hamiltonian G-space, proper moment map $\mu : M \to \mathfrak{g}^*$
- Norm $|\cdot|$ on \mathfrak{g}^*

Definition

$|\mu|^2 : M \to \mathbb{R}$ is the **norm-square of the moment map**.
Norm-square localization for Hamiltonian G-spaces

- M Hamiltonian G-space, proper moment map $\mu : M \rightarrow \mathfrak{g}^*$
- Norm $| \cdot |$ on \mathfrak{g}^*

Definition

$|\mu|^2 : M \rightarrow \mathbb{R}$ is the **norm-square of the moment map**.

Some past work:

- Kirwan (1984): Morse theory with $|\mu|^2$, Kirwan surjectivity
- Witten (1992): certain integrals localize to $\text{Crit}(|\mu|^2)$
- Paradan (1999, 2000): detailed norm-square localization formula
- Woodward (2005), Harada-Karshon (2012): other approaches
Hamiltonian LG-spaces

- G compact Lie group, Lie algebra \mathfrak{g}
- Ad-invariant inner product $\langle -, - \rangle$
- $LG = \text{Map}(S^1, G)$ loop group
- $L\mathfrak{g}^* = \Omega^1(S^1, \mathfrak{g})$, LG acts by gauge transformations:

$$g \cdot \xi = \text{Ad}_g \xi - dgg^{-1}.$$
Hamiltonian LG-spaces

- G compact Lie group, Lie algebra \mathfrak{g}
- Ad-invariant inner product $\langle -, - \rangle$
- $LG = \text{Map}(S^1, G)$ loop group
- $L\mathfrak{g}^* = \Omega^1(S^1, \mathfrak{g})$, LG acts by gauge transformations:

 $g \cdot \xi = \text{Ad}_g \xi - dg g^{-1}$.

Definition

A Hamiltonian LG-space $(\mathcal{M}, \omega_{\mathcal{M}}, \Psi)$ consists of a symplectic Banach manifold, equipped with an LG-action, and with a proper moment map $\Psi : \mathcal{M} \to L\mathfrak{g}^*$, equivariant for the gauge action of LG on $L\mathfrak{g}^*$.

Similar to finite dimensions: convexity theorem, cross-sections, etc.
L^2 norm on Lg^* by integration:

$$||\gamma||^2 = \frac{1}{2\pi} \int_0^{2\pi} |\gamma(\theta)|^2 d\theta.$$

$$||\Psi||^2 : M \rightarrow \mathbb{R}$$

is the **norm-square of the moment map**.
L^2 norm on Lg^* by integration: $||\gamma||^2 = \frac{1}{2\pi} \int_0^{2\pi} |\gamma(\theta)|^2 d\theta.$

$||\psi||^2 : \mathcal{M} \to \mathbb{R}$

is the **norm-square of the moment map**.

- $T \subset G$ maximal torus, Lie algebra t
- t_+ positive Weyl chamber
L^2 norm on Lg^* by integration: $||\gamma||^2 = \frac{1}{2\pi} \int_0^{2\pi} |\gamma(\theta)|^2 d\theta$.

$$||\psi||^2 : \mathcal{M} \rightarrow \mathbb{R}$$

is the **norm-square of the moment map**.

- $T \subset G$ maximal torus, Lie algebra t
- t_+ positive Weyl chamber

Theorem (Kirwan, Bott-Tolman-Weitsman)

The critical set of $||\psi||^2$ is

$$\text{Crit}(||\psi||^2) = \bigcup_{\beta \in \mathcal{B}} G \cdot (\mathcal{M}^\beta \cap \psi^{-1}(\beta)),$$

where $\mathcal{B} \subset t^*_+$ is a discrete subset.
Quasi-Hamiltonian G-spaces

- $\theta^L = g^{-1} dg$, $\theta^R = dgg^{-1}$ the left, resp. right Maurer-Cartan forms on G
- $\eta = \frac{1}{12} \langle [\theta^L, \theta^L], \theta^L \rangle$ Cartan 3-form
Quasi-Hamiltonian G-spaces

- $\theta^L = g^{-1} dg$, $\theta^R = ddg^{-1}$ the left, resp. right Maurer-Cartan forms on G
- $\eta = \frac{1}{12} \langle [\theta^L, \theta^L], \theta^L \rangle$ Cartan 3-form

Definition (Alekseev, Malkin, Meinrenken)

A quasi-Hamiltonian G-space (M, ω, Φ) is a G-manifold M, equipped with a G-invariant 2-form ω together with an equivariant map $\Phi : M \to G$ satisfying

1. $d\omega = \Phi^* \eta$
2. $\iota_{\xi_M} \omega = -\frac{1}{2} \Phi^* \langle \theta^L + \theta^R, \xi \rangle$
3. $\text{ker}(\omega) \cap \text{ker}(d\Phi) = 0$.

Reduction: at conjugacy class $C \subset G$: $\Phi^{-1}(C)/G$, is symplectic.

Examples: conjugacy classes, moduli spaces of flat connections on Riemann surfaces, even-dimensional spheres.
Quasi-Hamiltonian G-spaces

- $\theta^L = g^{-1} dg, \theta^R = dgg^{-1}$ the left, resp. right Maurer-Cartan forms on G
- $\eta = \frac{1}{12} \langle [\theta^L, \theta^L], \theta^L \rangle$ Cartan 3-form

Definition (Alekseev, Malkin, Meinrenken)

A quasi-Hamiltonian G-space (M, ω, Φ) is a G-manifold M, equipped with a G-invariant 2-form ω together with an equivariant map $\Phi : M \to G$ satisfying

1. $d \omega = \Phi^* \eta$
2. $\iota_{\xi M} \omega = -\frac{1}{2} \Phi^* \langle \theta^L + \theta^R, \xi \rangle$
3. $\ker(\omega) \cap \ker(d \Phi) = 0$.

Reduction: at conjugacy class $C \subset G$: $\Phi^{-1}(C)/G$, is symplectic.

Examples: conjugacy classes, moduli spaces of flat connections on Riemann surfaces, even-dimensional spheres.
Theorem (Alekseev, Malkin, Meinrenken)

There is a 1-1 correspondence between compact quasi-Hamiltonian G-spaces (M, ω, Φ), and proper Hamiltonian LG-spaces (M, ω_M, Ψ).
Theorem (Alekseev, Malkin, Meinrenken)

There is a 1-1 correspondence between compact quasi-Hamiltonian G-spaces (M, ω, Φ), and proper Hamiltonian LG-spaces $(\mathcal{M}, \omega_M, \Psi)$.

\[
\begin{array}{ccc}
M & \xrightarrow{\Psi} & Lg^* \\
\downarrow /L_0G & & \downarrow /L_0G \\
M & \xrightarrow{\Phi} & G
\end{array}
\]

$L_0G = \{ \gamma \in LG | \gamma(0) = \gamma(1) = e \}$
Theorem (Alekseev, Malkin, Meinrenken)

There is a 1-1 correspondence between compact quasi-Hamiltonian G-spaces $(\mathcal{M}, \omega, \Phi)$, and proper Hamiltonian LG-spaces $(\mathcal{M}, \omega_M, \Psi)$.

\[\begin{array}{ccc}
\mathcal{M} & \xrightarrow{\Psi} & Lg^* \\
\downarrow/L_0G & & \downarrow/L_0G \\
\mathcal{M} & \xrightarrow{\Phi} & G \\
\end{array} \]

- ω_M not basic—must be modified to $\omega_M - \Psi^*\overline{\omega}$, which then descends to \mathcal{M}.
- Reduced spaces agree, e.g. $\Psi^{-1}(0)/G \simeq \Phi^{-1}(e)/G$.
Possible degeneracy ⇒ need to modify formula for volume form.
Volume forms

Possible degeneracy \(\Rightarrow\) need to modify formula for volume form.

Adjoint action (assume \(G\) connected)

\[
\text{Ad} : G \to SO(\mathfrak{g}).
\]
Possible degeneracy \(\Rightarrow\) need to modify formula for volume form.

Adjoint action (assume \(G\) connected)

\[
\text{Ad} : G \to SO(\mathfrak{g}).
\]

Assume lift exists:

\[
\tilde{\text{Ad}} : G \to \text{Spin}(\mathfrak{g}).
\]
Volume forms

Possible degeneracy \Rightarrow need to modify formula for volume form.

Adjoint action (assume G connected)

$$\text{Ad} : G \to SO(g).$$

Assume lift exists:

$$\tilde{\text{Ad}} : G \to \text{Spin}(g).$$

Recall:

$$\text{Spin}(V) \subset \text{Cliff}(V), \quad \text{Cliff}(V) \cong \wedge V.$$
Possible degeneracy \Rightarrow need to modify formula for volume form.

Adjoint action (assume G connected)

$$\text{Ad} : G \rightarrow SO(\mathfrak{g}).$$

Assume lift exists:

$$\tilde{\text{Ad}} : G \rightarrow \text{Spin}(\mathfrak{g}).$$

Recall: $\text{Spin}(V) \subset \text{Cliff}(V)$, $\text{Cliff}(V) \simeq \wedge V.$

Compose to get map $\psi : G \rightarrow \wedge \mathfrak{g}$, i.e. a left-invariant differential form on G.
Volume forms

Theorem (Alekseev, Meinrenken, Woodward)

Suppose G simply connected. The top degree form

$$\Gamma = (e^\omega \Phi^* \psi)^{[\text{top}]}$$

is a volume form on M.

Theorem (Alekseev, Meinrenken, Woodward)

Suppose G simply connected. The top degree form

$$\Gamma = \left(e^\omega \Phi^* \psi\right)^{[\text{top}]},$$

is a volume form on M.

Example

G simple, simply connected. Fundamental alcove $\mathcal{A} \subset t_+$. Conjugacy class \mathcal{C}_μ containing $\exp(\mu)$, $\mu \in \mathcal{A}$.

$$\text{Vol}(\mathcal{C}_\mu) = \text{vol}(G/G_{\exp(\mu)}) \prod_{\alpha > 0, \langle \alpha, \mu \rangle \notin \mathbb{Z}} 2\sin(\pi \langle \alpha, \mu \rangle).$$
Duistermaat-Heckman distributions

Definition

The *Duistermaat-Heckman (DH) distribution* of a quasi-Hamiltonian space is the pushforward

$$\Phi_* |\Gamma| \in \mathcal{D}'(G)^G.$$
Definition

The Duistermaat-Heckman (DH) distribution of a quasi-Hamiltonian space is the pushforward

\[\Phi_*|\Gamma| \in D'(G)^G. \]

Volume of reduced spaces: assume \(e \in G \) regular value \(\Rightarrow \)

\[\text{vol}(\Phi^{-1}(e)/G) = \frac{d}{\text{vol}(G)} \frac{\Phi_*|\Gamma|}{d\text{vol}_G} \bigg|_e. \]

Remark

More general DH distributions twisted by \(\alpha \in H_G(M) \) encode cohomology pairings on quotients.
Definition

The Duistermaat-Heckman (DH) distribution of a quasi-Hamiltonian space is the pushforward

\[\Phi_* |\Gamma| \in \mathcal{D}'(G)^G. \]

Volume of reduced spaces: assume \(e \in G \) regular value \(\Rightarrow \)

\[\text{vol}(\Phi^{-1}(e)/G) = \left. \frac{d}{\text{vol}(G)} \frac{\Phi_* |\Gamma|}{d\text{vol}_G} \right|_e. \]

Remark

More general DH distributions twisted by \(\alpha \in H_G(M) \) encode cohomology pairings on quotients.

Next define related distribution on \(T \subset G \).
The map R_G

- $W = N(T)/T$ Weyl group
- ρ half-sum pos. roots, n_+ number of pos. roots
- χ_λ irreducible rep. corresponding to dominant weight λ

Definition

There is an isomorphism

$$R_G : \mathcal{D}'(G)^G \sim \to \mathcal{D}'(T)^{W-\text{anti}}.$$

determined by the equation

$$i^{-n_+} \langle n, \overline{\chi_\lambda} \rangle = \text{vol}_{G/T} \langle R_G(n), t^{\lambda+\rho} \rangle.$$
The map R_G

- $W = N(T)/T$ Weyl group
- ρ half-sum pos. roots, n_+ number of pos. roots
- χ_λ irreducible rep. corresponding to dominant weight λ

Definition

There is an isomorphism

$$R_G : \mathcal{D}'(G)^G \xrightarrow{\sim} \mathcal{D}'(T)^W_{\text{anti}}.$$ determined by the equation

$$i^{-n_+} \left\langle n, \overline{\chi_\lambda} \right\rangle = \text{vol}_{G/T} \langle R_G(n), t^{\lambda+\rho} \rangle.$$

Example

Let $f \in C^\infty(G)^G$, and $J(t) = \sum_{w \in W} (-1)^{|w|} t^\rho$.

$$R_G(f \ d\text{vol}_G) = J \cdot (f|_T) \ d\text{vol}_T.$$
Example

Let \(\mu \in \text{int}(\mathcal{A}) \) and
\[
\iota : C_\mu \hookrightarrow G.
\]
\(\iota_*|\Gamma| \in \mathcal{D}'(G)^G \) is a delta distribution on \(C_\mu \subset G \) with total weight \(\text{Vol}(C_\mu) \). Then:
\[
R_G(\iota_*|\Gamma|) = \frac{1}{|W|} \sum_{w \in W} (-1)^{|w|} \delta_w \exp \mu.
\]
Example

Let $\mu \in \text{int}(\mathcal{A})$ and

$$\iota : C_\mu \hookrightarrow G.$$

$\iota_*|\Gamma| \in \mathcal{D}'(G)^G$ is a delta distribution on $C_\mu \subset G$ with total weight $\text{Vol}(C_\mu)$. Then:

$$R_G(\iota_*|\Gamma|) = \frac{1}{|W|} \sum_{w \in W} (-1)^{|w|} \delta_w \exp \mu.$$

Example

$e \in G$ identity element

$$R_G(\delta_e^G) = \left(\prod_{\alpha < 0} \partial_\alpha \right) \delta_e^T.$$
A DH distribution for $\Phi^{-1}(T)$

Definition

Recall $\Phi_*|\Gamma| \in \mathcal{D}'(G)^G$ is the DH distribution of M. We define

$$m = R_G(\Phi_*|\Gamma|) \in \mathcal{D}'(T)^{W-\text{anti}}.$$

m is the distribution we will discuss for the rest of the talk.
A DH distribution for $\Phi^{-1}(T)$

Definition
Recall $\Phi_\ast |\Gamma| \in \mathcal{D}'(G)^G$ is the DH distribution of M. We define

$$m = R_G(\Phi_\ast |\Gamma|) \in \mathcal{D}'(T)^{W-\text{anti}}.$$

m is the distribution we will discuss for the rest of the talk.

Basic properties:
- Φ transverse to $T \Rightarrow m$ is DH distribution of $\Phi^{-1}(T) \subset M$.
- Gives $\text{vol}(\Phi^{-1}(C_\mu)/G)$ directly for $\mu \in \text{int}(\mathcal{A})$.
- If Φ has regular values, it is piecewise-polynomial.
Examples of $m \in \mathcal{D}'(T)^{W\text{-anti}}$

Example

\[DSU(2) = SU(2) \times SU(2) \ominus SU(2), \quad \Phi(a, b) = aba^{-1}b^{-1} \]

$|\Gamma|$ = Haar measure \quad \quad \quad \quad \quad \quad m = R_G(\Phi_*|\Gamma|)$ is:
Example

\[
DSU(2) = SU(2) \times SU(2) \odot SU(2), \quad \Phi(a, b) = aba^{-1}b^{-1}
\]

\[|\Gamma| = \text{Haar measure} \quad m = R_G(\Phi_\star |\Gamma|) \text{ is:}
\]

Example

\[S^4 \odot SU(2) \quad m = R_G(\Phi_\star |\Gamma|) \text{ is:}
\]
Example of $m \in \mathcal{D}'(T)^{W-\text{anti}}$

Example

Multiplicity-free, quasi-Hamiltonian $SU(3)$-space (Chris Woodward).
Recall: \[\text{Crit}(\|\Psi\|^2) = \bigcup_{\beta \in \mathcal{B}} G \cdot (\mathcal{M}^\beta \cap \Psi^{-1}(\beta)) \]

Theorem

There is a norm-square localization formula for \(m \):

\[
m = \sum_{\beta \in W \cdot B} m_\beta.
\]

- \(m_\beta \) piecewise-polynomial on cones with apex at \(\beta \).
- \(\beta \neq 0 \Rightarrow \text{support } m_\beta \text{ contained in half-space } \beta \geq \|\beta\|^2. \)
- Expression for \(m_\beta \) as integral over submanifold near \(\mathcal{M}^\beta \cap \Psi^{-1}(\beta) \), involving local geometric data.
\[\phi : Y \to U \text{ cross-section, } \beta \in U \subset Lg^*, \text{ project } \phi^t := \text{pr}^t \circ \phi. \]

Minimal coupling $\to \text{Tot}(\nu(Y^\beta, Y^\beta))$ becomes Hamiltonian T-space (polarized weights).

For m^β: take germ of (twisted) DH measure for $\text{Tot}(\nu(Y^\beta, Y^\beta))$ near β and extend.

Explicit formula similar to Paradan (2000). Convolutions of polynomial distributions on walls, and Heaviside distributions $H^\alpha, \langle \alpha, \beta \rangle > 0$.

Yiannis Loizides

Norm-square localization for Hamiltonian LG-spaces

July 2015 16 / 34
$\phi : Y \rightarrow U$ cross-section, $\beta \in U \subset Lg^*$, project $\phi_t := \text{pr}_{t^*} \circ \phi$.

\begin{itemize}
 \item $\phi : Y \rightarrow U$ cross-section, $\beta \in U \subset Lg^*$, project $\phi_t := \text{pr}_{t^*} \circ \phi$.
\end{itemize}
\(\phi : Y \to U \) cross-section, \(\beta \in U \subset Lg^* \), project \(\phi_t := \text{pr}_{t*} \circ \phi \).

Minimal coupling \(\to \text{Tot}(\nu(Y^\beta, Y)) \) becomes Hamiltonian \(T \)-space (polarized weights).
\[\phi : Y \to U \text{ cross-section, } \beta \in U \subset Lg^*, \text{ project } \phi_t := \text{pr}_t^* \circ \phi. \]

- Minimal coupling \(\to \text{Tot}(\nu(Y^\beta, Y)) \) becomes Hamiltonian \(T \)-space (polarized weights).

- For \(m_{\beta} \): take germ of (twisted) DH measure for \(\text{Tot}(\nu(Y^\beta, Y)) \) near \(\beta \) and extend.

- Explicit formula similar to Paradan (2000). Convolutions of polynomial distributions on walls, and Heaviside distributions \(H_\alpha, \langle \alpha, \beta \rangle > 0. \)
Norm-square localization for S^4
Chris Woodward’s example
First three contributions
First three contributions
First three contributions
First three contributions
Outline of method

Strategy modelled on that of Szenes-Vergne ("[Q,R]=0 and Kostant multiplicity functions", 2010).
Outline of method

Strategy modelled on that of Szenes-Vergne ("\([Q,R]=0\) and Kostant multiplicity functions", 2010).

- Write \(m\) as sum of simpler distributions (abelian localization).

 Do norm-square localization for each of these simpler distributions. Because they are so simple, this can be done with combinatorics! (But the result is a mess...)

 Use geometry + abelian localization (again) to re-assemble/re-interpret terms.

 For explicit expressions (similar to Paradan (2000)) involving an integral near the critical set, some additional argument involved (more technical, not for today).
Outline of method

Strategy modelled on that of Szenes-Vergne ("\([Q,R]=0\) and Kostant multiplicity functions", 2010).

- Write \(m \) as sum of simpler distributions (abelian localization).
- Do norm-square localization for each of these simpler distributions. Because they are so simple, this can be done with combinatorics! (But the result is a mess...)
Strategy modelled on that of Szenes-Vergne ("[Q,R]=0 and Kostant multiplicity functions", 2010).

- Write m as sum of simpler distributions (abelian localization).
- Do norm-square localization for each of these simpler distributions. Because they are so simple, this can be done with combinatorics! (But the result is a mess...)
- Use geometry + abelian localization (again) to re-assemble/re-interpret terms.
Outline of method

Strategy modelled on that of Szenes-Vergne ("[Q,R] = 0 and Kostant multiplicity functions", 2010).

- Write m as sum of simpler distributions (abelian localization).
- Do norm-square localization for each of these simpler distributions. Because they are so simple, this can be done with combinatorics! (But the result is a mess...)
- Use geometry + abelian localization (again) to re-assemble/re-interpret terms.

For explicit expressions (similar to Paradan (2000)) involving an integral near the critical set, some additional argument involved (more technical, not for today).
Example: S^4
Example: S^4
Example: S^4
Add central contributions:

Next two contributions (along positive \mathbb{R} axis):
Chris Woodward’s example

3 Fixed-point contributions:

- Pullbacks of
- Central contribution from
- Each is a non-trivial linear function.

But the sum is zero.
Chris Woodward’s example

3 Fixed-point contributions: pullbacks of

Central contribution from each is a non-trivial linear function.
3 Fixed-point contributions: pullbacks of

Central contribution from each is a non-trivial linear function. But the sum is zero.
$\rightarrow \text{Identify } t \simeq t^*.$

Theorem (Alekseev, Meinrenken, Woodward)

Let $\xi \in \Lambda^\ast$ (weight lattice). We have the following abelian localization formula for the Fourier coefficients of m:

$$\langle m, t^\xi \rangle = \prod_{\alpha > 0} 2\pi i \langle \alpha, \xi \rangle \sum_{\nu \in \Lambda^\ast} \int_{F \subset M^\xi} e^{2\pi i \omega \Phi^\xi} \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_F, \xi)}.$$

Want to interchange the two summations.
Abelian localization formula for m

\[\rightarrow \text{Identify } t \simeq t^*. \]

Theorem (Alekseev, Meinrenken, Woodward)

Let $\xi \in \Lambda^*$ (weight lattice). We have the following abelian localization formula for the Fourier coefficients of m:

\[
\langle m, t^\xi \rangle = \prod_{\alpha > 0} 2\pi i \langle \alpha, \xi \rangle \sum_{\xi \in \Lambda^*} \sum_{F \subset M^\xi} \int_F \frac{e^{2\pi i \omega \Phi^\xi}}{\text{Eul}(\nu_F, \xi)}. \]

Fourier inversion:

\[
m(\mu) = \prod_{\alpha < 0} \partial_{\alpha} \sum_{\xi \in \Lambda^*} \sum_{F \subset M^\xi} \int_F \frac{e^{2\pi i \omega \Phi^\xi}}{\text{Eul}(\nu_F, \xi)} e^{-2\pi i \langle \mu, \xi \rangle}. \]

Want to interchange the two summations.
Abelian localization formula for m

Take F, closure of a T-orbit type.

- $t_F \subset t$ infinitesimal stabilizer of F
- $\alpha_i, i = 1, \ldots, N$ list of weights on the normal bundle ν_F
- $(\Lambda^* \cap t_F) \setminus \cup \{\alpha_i = 0\}$ subset of Λ^* where \int_F appears

Then:

$$m = \prod_{\alpha < 0} \frac{\partial \alpha}{\sum_{F} m_F(\mu)}$$

where $$m_F(\mu) = \sum_{\xi' \in \Lambda^* \cap t_F} \int_F e^{-\frac{1}{2\pi i} \langle \mu, \xi \rangle} Eul(\nu_F, \xi) e^{2\pi i \omega \Phi \xi}.$$
Take F, closure of a T-orbit type.

- $t_F \subset t$ infinitesimal stabilizer of F
- $\alpha_i, i = 1, \ldots, N$ list of weights on the normal bundle ν_F
- $(\Lambda^* \cap t_F) \setminus \cup\{\alpha_i = 0\}$ subset of Λ^* where \int_F appears

Then:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_{F} m_F,$$

where

$$m_F(\mu) = \sum' \int_{\xi \in \Lambda^* \cap t_F} \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{Eul(\nu_F, \xi)} e^{2\pi i \omega \Phi^{\xi}}.$$
Abelian localization formula for m

Take F, closure of a T-orbit type.

- $t_F \subset t$ infinitesimal stabilizer of F
- $\alpha_i, i = 1, \ldots, N$ list of weights on the normal bundle ν_F
- $(\Lambda^* \cap t_F) \setminus \cup\{\alpha_i = 0\}$ subset of Λ^* where \int_F appears

Then:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_{F} m_F,$$

where

$$m_F(\mu) = \sum' \int_{\xi \in \Lambda^* \cap t_F} \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_F, \xi)} e^{2\pi i \omega \Phi^\xi}.$$

$\Rightarrow m_F$ is sum of (shifted) multiple Bernoulli series.
Multiple Bernoulli series

- V vector space, $\Gamma \subset V$ lattice, dual $\Gamma^* \subset V^*$
- α a list of elements of Γ^*

Definition (Szenes (1998), Brion-Vergne (1999),...)

The **multiple Bernoulli series** associated to the data V, Γ, α is:

$$B_{\alpha, \Gamma}(\mu) = \sum'_{\xi \in \Gamma} \frac{e^{2\pi i \langle \mu, \xi \rangle}}{\prod_k 2\pi i \langle \alpha_k, \xi \rangle}.$$
Multiple Bernoulli series

- V vector space, $\Gamma \subset V$ lattice, dual $\Gamma^* \subset V^*$
- α a list of elements of Γ^*

Definition (Szenes (1998), Brion-Vergne (1999),...)

The *multiple Bernoulli series* associated to the data V, Γ, α is:

$$B_{\alpha, \Gamma}(\mu) = \sum_{\xi \in \Gamma} \prod_k \frac{e^{2\pi i \langle \mu, \xi \rangle}}{2\pi i \langle \alpha_k, \xi \rangle}.$$

Examples

- $B_{\emptyset, \mathbb{Z}}(x) = \sum_{n \in \mathbb{Z}} e^{2\pi inx} = \sum_{n \in \mathbb{Z}} \delta(x - n)$
- $B_{1, \mathbb{Z}}(x) = \sum_{n \neq 0} \frac{e^{2\pi inx}}{2\pi in} = \frac{1}{2} - x + \lfloor x \rfloor$
Choose generic $\gamma \in V^*$, and inner product.

Theorem (Boysal-Vergne)

There is a decomposition:

$$B_{\alpha, \Gamma} = \sum_{\Delta \in \mathcal{A}} B_{\alpha, \Gamma, \Delta},$$

where

- \mathcal{A} an infinite collection of affine subspaces $\Delta \subset V^*$,
- $B_{\alpha, \Gamma, \Delta}$ is a convolution of a polynomial distribution on Δ with Heaviside distributions in transverse directions,
- for $\Delta \neq V^*$, $\gamma \notin \text{support}(B_{\alpha, \Gamma, \Delta})$.

Decomposition of m_F

Recall:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_F m_F,$$

where

$$m_F(\mu) = \sum'_{\xi \in \Lambda^* \cap t_F} \int_F \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\Eul(\nu_F, \xi)} e^{2\pi i \omega \Phi_\xi}.$$
Decomposition of m_F

Recall:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_F m_F,$$

where

$$m_F(\mu) = \sum'_{\xi \in \Lambda^* \cap t_F} \int_F \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_F, \xi)} e^{2\pi i \omega} \Phi^\xi.$$

- Apply Boysal-Vergne type decomposition.
Decomposition of m_F

Recall:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_F m_F,$$

where

$$m_F(\mu) = \sum'_{\xi \in \Lambda^* \cap t_F} \int_F \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_F, \xi)} e^{2\pi i \omega} \Phi^\xi.$$

- Apply Boysal-Vergne type decomposition.
- Group terms according to affine subspaces Δ.
Decomposition of m_F

Recall:

$$m = \prod_{\alpha < 0} \partial_\alpha \sum_F m_F,$$

where

$$m_F(\mu) = \sum_{\xi \in \Lambda^* \cap t_F} \int_F \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_F, \xi)} e^{2\pi i \omega \Phi_\xi}.$$

- Apply Boysal-Vergne type decomposition.
- Group terms according to affine subspaces Δ.
- Subalgebra $\Delta^\perp =: t_\Delta \subset t$.
Decomposition of m_F

Recall:

$$m = \prod_{\alpha < 0} \partial_{\alpha} \sum_{F} m_{F},$$

where

$$m_{F}(\mu) = \sum'_{\xi \in \Lambda^* \cap t_{F}} \int_{F} \frac{e^{-2\pi i \langle \mu, \xi \rangle}}{\text{Eul}(\nu_{F}, \xi)} e^{2\pi i \omega} \Phi_{\xi}.$$

- Apply Boysal-Vergne type decomposition.
- Group terms according to affine subspaces Δ.
- Subalgebra $\Delta^\perp =: t_{\Delta} \subset t$.
- Further grouping according to lattice of T orbit-types.

Then:

$$m = \sum_{\Delta} \sum_{C \subset M^{t\Delta}} m_{\Delta, C}.$$
- $C \subset M^\Delta$ is a \emph{quasi-Hamiltonian} space.
- $\text{Tot}(\nu(C, M))$ is a “hybrid” between Hamiltonian and quasi-Hamiltonian.
- $C \subset M^{t_{\Delta}}$ is a quasi-Hamiltonian space.
- $\text{Tot}(\nu(C, M))$ is a “hybrid” between Hamiltonian and quasi-Hamiltonian.
- Let $\beta \in t_{\Delta}$ be orthogonal projection of 0 onto Δ.

\[\beta \]

\[0 \to t_{\Delta} \to t_{\Delta} = t \]
• $C \subset M^{t_{\Delta}}$ is a quasi-Hamiltonian space.
• $\text{Tot}(\nu(C, M))$ is a “hybrid” between Hamiltonian and quasi-Hamiltonian.
• Let $\beta \in t_{\Delta}$ be orthogonal projection of 0 onto Δ.

\Rightarrow Term $m_{\Delta, C}$ corresponding to $C \subset M^{t_{\Delta}}$ is the extension of the germ (at β) of a DH distribution for $\text{Tot}(\nu(C, M))$! (abelian localization on $\text{Tot}(\nu(C, M))$)
Reinterpretation of summands

\[\Delta = t \]

\[t_\Delta = t \]

- \(\Rightarrow \) contribution vanishes unless \(\Phi^{-1}(\exp(\beta)) \cap M^{t_\Delta} \neq \emptyset \). Since

\[\Phi^{-1}(\exp(\beta)) \cap M^{t_\Delta} \simeq \Psi^{-1}(\beta) \cap M^{t_\Delta}, \]

- \(\Rightarrow \) non-zero contributions indexed by components of critical set of \(||\Psi||^2 \).

- Further argument leads to explicit formulas involving integrals in cross-sections near critical set.