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Topological phases

In contrast to usual phases, which are related to a
spontaneously broken symmetry, topological phases (e.g.
topological insulators) are many fermion systems possessing
an unusual band structure that leads to a bulk band gap as well
as topologically protected gapless extended surface modes.

Topological phases of free fermion models arise from
symmetries of one-particle Hamiltonians (time reversal,
particle-hole). There are 10 symmetry classes of Hamiltonians
(the ‘ten-fold way’) and non trivial topological phases are
classified by K-theory.
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Altland-Zirnbauer classes and The Periodic Table

AZ label TRS PHS SLS d = 0 d = 1 d = 2 d = 3
A 0 0 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z
BDI +1 +1 1 Z2 Z 0 0
D 0 +1 0 Z2 Z2 Z 0

DIII −1 +1 1 0 Z2 Z2 Z
AII −1 0 0 Z 0 Z2 Z2
CII −1 −1 1 0 Z 0 Z2
C 0 −1 0 0 0 Z 0
CI +1 −1 1 0 0 0 Z
AI +1 0 0 Z 0 0 0
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Topological phases, cont’d

The relation to K-theory arises in three different ways:
Through vector bundles
Through classifying spaces
Through extensions of Clifford modules

These are related through the Atiyah-Bott-Shapiro construction.
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Topological phases, cont’d

In the presence of translation symmetry, we can block
diagonalise the Hamiltonian in terms of eigenvalues under the
translation operators

H =
⊕
k∈BZ

H(k)

where H(k) is so-called Bloch Hamiltonian, and BZ is the
Brillouin zone (e.g. a torus Td ).
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Bands can have nontrivial structure protected under
(gap-preserving) deformations of Hamiltonians. I.e. we need to
classify deformation classes of Hamiltonians.
It suffices to put the gap at E = EF = 0 and to study ‘flattened
Hamiltonians’, i.e. with eigenvalues ±1.
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Flattened Hamiltonians

If we have an arbitrary gapped Hamiltonian H (with a gap at 0),
let P± be the projection operator on the positive/negative
eigenspace. The flattened Hamiltonian H̃, with eigenvalues ±1,
is defined as

H̃ = P+ − P− = 1− 2P− .

To show that H and H̃ are homotopic, let Pλ be the projection
operator onto the eigenspace of eigenvalue λ. We have

P+ =
⊕
λ>0

Pλ , P− =
⊕
λ<0

Pλ

Now consider

Ht =
⊕
λ

(
λ

(1− t) + t |λ|

)
Pλ , t ∈ [0,1] .

Then

H0 =
⊕
λ

λPλ = H , H1 =
⊕
λ

λ

|λ|
Pλ =

⊕
λ>0

Pλ−
⊕
λ<0

Pλ = H̃ .
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The Example

Consider H = C2. In terms of Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
satisfying

{σi , σj} = 2δij , (σi)
† = σi

we can define a Hamiltonian

H = H(x̂) =
∑

i

x̂ iσi = x̂·σ = xσx +yσy +zσz =

(
z x − iy

x + iy −z

)

with x̂ = (x , y , z) ∈ S2.
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The Example, cont’d

We have
Tr H = 0 , H† = H , H2 = 1 ,

from which we conclude that H has eigenvalues ±1, each with
multiplicity 1.

For eigenvalue λ = −1 (the ‘valence band’) the normalised
eigenvectors ψN/S

− on S2
N/S, where S2

N = S2\{z = −1} and
S2

S = S2\{z = 1}, are given by

ψN
− =

1√
2(1 + z)

(
x − iy
−(1 + z)

)
, ψS

− =
1√

2(1− z)

(
−(1− z)

x + iy

)

Together they define a linebundle E− over S2, with first Chern
class c1 = 1. [Associated circle bundle is the Hopf fibration.]
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The Example, cont’d

Knowing the eigenbundle E−, we can reconstruct the
Hamiltonian as follows. First we determine the projection
operator P− : E → E−, where E is the trivial C2-bundle over S2

P− = ψN
−ψ

N
−
† = 1

2

(
1− z −(x − iy)
−(x + iy) 1 + z

)
,

and hence
H = P+ − P− = 1− 2P−
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The Example, cont’d

A connection A− on E− is given, locally on S2
N/S, by

AN
− = iψN

−
†dψN

− =
xdy − ydx
2(1 + z)

=
sin2 θ dφ

2(1 + cos θ)
= 1

2(1− cos θ) dφ

AS
− = iψS

−
†dψS

− =
−xdy + ydx

2(1− z)
=
− sin2 θ dφ
2(1− cos θ)

= −1
2(1 + cos θ) dφ

which is precisely the connection for a Dirac monopole.
On S2

N ∩ S2
S the AN/S

− differ by a gauge transformation

AN
− − AS

− = dφ .

Thus
F− = dAN

− = dAS
− = 1

2 sin θ dθ ∧ dφ ,

is globally defined on S2, and

c1 =
1

2π

∫
S2

F− =
1

4π
Vol(S2) = 1 .
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Projection operators and Berry connections

Let Ψ be an N × k matrix of k (orthonormal) vectors in CN . In
terms of matrix components ΨAa, A = 1, . . . ,N, a = 1, . . . , k .
We have

Ψ†Ψ = 1 .

The projections operator P onto the subspace spanned by the
vectors Ψa, is given by

P = ΨΨ† , P2 = P .

Now consider a smooth family of projection operators
P = P(x̂), varying over a space X , and the subbundle
E ⊂ X × CN given by P.
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Projection operators and Berry connections, cont’d

On E , we can canonically construct two connections ∇
∇s = Pd(Ps) = Pds + (PdP)s.

∇2s = Pd(Pds + PdPs) + PdP ∧ (Pds + PdPs)

= PdP ∧ ds + PdP ∧ dPs − PdP ∧ ds + PdPP ∧ ds
+ PdP ∧ PdPs = (PdP ∧ dP)s ≡ F∇s ,

i.e. , curvature F∇ = P dP ∧ dP.
Ds = Ψ†d(Ψs) = ds + (Ψ†dΨ)s, with curvature
FD = dΨ† ∧ dΨ + Ψ†dΨ ∧Ψ†dΨ (Berry connection).

They are related by

F∇ = ΨFDΨ†
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Projection operators and Berry connections, cont’d

Proof: From P = ΨΨ†, and Ψ†Ψ = 1, it follows

dP = dΨΨ† + ΨdΨ† , dΨ†Ψ + Ψ†dΨ = 0

From P2 = P it follows

PdP + dPP = dP

Multiplying by P on the left (or right), then gives PdPP = 0.
Differentiating this equation gives PdP ∧ dP = dP ∧ dPP.
Hence

F∇ = PdP ∧ dP = P2dP ∧ dP = PdP ∧ dPP

= ΨΨ†(dΨΨ† + ΨdΨ†) ∧ (dΨΨ† + ΨdΨ†)ΨΨ†

= Ψ(dΨ† ∧ dΨ + Ψ†dΨ ∧Ψ†dΨ)Ψ†

= ΨFDΨ† ,
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Projection operators and Berry connections, cont’d

In particular we find

Tr(F∇n) = Tr(P(dP)2n) = tr(FD
n) .

where Tr is taken over CN and tr over Ck .

In particular, for P = 1
2(1− H),

c1 =
i

2π

∫
Tr(P dP ∧ dP) = − i

16π

∫
Tr(H dH ∧ dH)
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The Example, cont’d

E.g. for H = x̂ · σ, we have

c1 = − i
16π

∫
Tr(H dH ∧ dH)

= − i
16π

∫
d2x εµν x̂ i∂µx̂ j∂ν x̂kTr(σiσjσk )

=
1

8π

∫
d2x εµν x̂ · (∂µx̂× ∂ν x̂) = 1

Consider the generalization

H = ĥ(x) · σ , ĥ : S2 → S2

gives negative eigenvector bundle with

c1 =
1

8π

∫
S2

d2x εµν ĥ · (∂µĥ × ∂ν ĥ)

i.e. winding number of ĥ, e.g. element of π2(S2) ∼= Z.
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The Example, further generalizations

Instead, in the previous example, we can take ĥ : X → S2, or
more generally h : X → Sd if we have a higher dimensional
generalization of the Pauli matrices (representation of a Clifford
algebra)

{γi , γj} = 2δij

I.e.
H = ĥ(x) · γ
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Integer Quantum Hall Effect

The Kubo formula for the Hall conductance σxy

jx = σxyEy

gives

σxy =
e2

2π~
n

where
n = c1 =

1
2π

∫
BZ

tr FD
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Integer Quantum Hall Effect, cont’d

Determine deformation classes of Hamiltonians only up to
addition of trivial valence bands (physical properties are the
same). I.e. to the negative eigenbundle E− we associate its
class in K 0(X ).
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Classifying spaces

We may parametrize our Hamiltonian as

H = A(x)σzA(x)†

where A : X → U(2). In fact, since U(1)× U(1) ⊂ U(2)
commutes with σz , we have

A : X → U(2)/U(1)× U(1) ∼= S2 .

For N →∞, the symmetric space ⊕kU(N)/U(k)× U(N − k)
approaches the classifying space C0,

K0(X ) = [X ,C0]

In particular [pt ,C0] ∼= π0(C0) ∼= Z, [S2,C0] ∼= π2(C0) ∼= Z.
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Symmetries

In a QM system we are interested in transformations
A : H → H such that

|〈Ax ,Ay〉| = |〈x , y〉| (∗)

Theorem (Wigner, 1931)

A surjective map A, satisfying (?), is of the form A = cU, where
|c| = 1 and U is either a unitary or anti-unitary transformation

Definition
An anti-unitary transformation U : H → H is an anti-linear
transformation

U(λx + µy) = λ̄U(x) + µ̄U(y)

such that
〈Ux ,Uy〉 = 〈x , y〉
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Symmetries, cont’d

Examples of anti-unitary transformations
K : C→ C, Kz = z̄, K 2 = 1

U = σyK =

(
0 −i
i 0

)
K : C2 → C2, U2 = −1

In QM systems there are three relevant symmetries
Time Reversal Symmetry (TRS):
TH = HT , T 2 = ±1 (anti-unitary)
Particle-Hole Symmetry (PHS) (Charge Conjugation):
PH = −HP, P2 = ±1 (anti-unitary)
Sublattice Symmetry (SLS) (Chiral):
CH = −HC, C = PT , C2 = 1 (unitary)
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Symmetries, cont’d

In case of Bloch Hamiltonians
Time Reversal Symmetry (TRS):
TH(k) = H(−k)T , T 2 = ±1 (anti-unitary)
Particle-Hole Symmetry (PHS) (Charge Conjugation):
PH(k) = −H(−k)P, P2 = ±1 (anti-unitary)
Sublattice Symmetry (SLS) (Chiral):
CH(k) = −H(k)C, C = PT , C2 = 1 (unitary)

There are 3× 3 possible choices for T 2,P2, denoted as 0,±1,
and for T = P = 0, there are two choices for C, denoted as 0,1.

This leads to 10 symmetry classes [Dyson, Altand-Zirnbauer]
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Altland-Zirnbauer classes and The Periodic Table

AZ label TRS PHS SLS d = 0 d = 1 d = 2 d = 3
A 0 0 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z
BDI +1 +1 1 Z2 Z 0 0
D 0 +1 0 Z2 Z2 Z 0

DIII −1 +1 1 0 Z2 Z2 Z
AII −1 0 0 Z 0 Z2 Z2
CII −1 −1 1 0 Z 0 Z2
C 0 −1 0 0 0 Z 0
CI +1 −1 1 0 0 0 Z
AI +1 0 0 Z 0 0 0
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Classifying spaces

AZ label Class. Space G/H π0
A C0 ⊕k (U(N)/U(N − k)× U(k)) Z

AIII C1 U(N)× U(N)/U(N) 0
BDI R1 O(N)×O(N)/O(N) Z2
D R2 O(2N)/U(N) Z2

DIII R3 U(2N)/Sp(N) 0
AII R4 ⊕k (Sp(N)/Sp(N − k)× Sp(k)) Z
CII R5 Sp(N)× Sp(N)/Sp(N) 0
C R6 Sp(N)/U(N) 0
CI R7 U(N)/O(N) 0
AI R0 ⊕k (O(N)/O(N − k)×O(k) Z
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Another example, free fermion systems

Free fermion Dirac operators

{a†j ,ak} = δjk , j , k = 1, . . . ,n

A general Hamiltonian conserving particle number is of the form

HA =
∑
i,j

Ajka†j ak , A† = A

If particle number is not conserved, introduce Majorana
operators

c2j−1 = a†j + aj , c2j = i(a†j − aj)

satisfying

{cl , cm} = 2δlm , l ,m = 1, . . . ,2n , c†l = cl
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Another example, free fermion systems

Free field Hamiltonian (Majorana chain)

HA = i
4
∑

j,k Ajkcjck ,

where A is real, skew-symmetric, of size 2n.
Trivial Hamiltonian

Htriv =
∑

j

(a†j aj − 1
2) = HQ

where

Q =


0 1
−1 0

0 1
−1 0

. . .


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Another example, free fermion systems

After spectral flattening HA → H̃A = HÃ, we have

Ã = SQS−1 , S ∈ O(2n)

The set of matrices in O(2n) commuting with Q form a
subgroup U(n) ⊂ O(2n), hence Ã takes values in O(2n)/U(n).
Upon identifying Ã ∼ Ã⊕Q we find

[Ã] ∈ R2 = lim
n→∞

O(2n)/U(n)

Connected components π0(R2) ∼= Z2 distinguished by value of
sgn(Pf(A)) = Pf(Ã) = det S = ±1 (particle number mod 2).
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Real K-theory

It turns out that the Rq are the classifying spaces for Atiyah’s
real K-theory, in particular

K̃O
−q

(pt) ∼= π0(Rq)

Generalization to higher dimensional parameter spaces X is a
little more subtle.
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Clifford algebras

Clp,q is the algebra (over R) generated by ei , i = 1, . . . ,p + q,
with

e2
i = −1 i = 1, . . . ,p

e2
i = 1 i = p + 1, . . . ,p + q

eiej + ejei = 0 i 6= j

We have the folllowing isomorphisms

Clp,0 ⊗ Cl0,2 ∼= Cl0,p+2

Cl0,p ⊗ Cl2,0 ∼= Clp+2,0

Clp,q ⊗ Cl1,1 ∼= Clp+1,q+1

Clp+8,0
∼= Clp,0 ⊗ R(16)

For Clifford algebras over C we have Clp+2
∼= Clp ⊗ C(2).
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Clifford algebras

We have the following result for the first few Clifford algebras

Cl1,0 ∼= C Cl0,1 ∼= R⊕ R
Cl2,0 ∼= H Cl0,2 ∼= R(2)

Cl1,1 ∼= R(2)
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Classification of Clifford algebras

k Clk ,0(R) Cl0,k (R) Clk (C)

0 R R C
1 C(1) R(1)⊕ R(1) C(1)⊕ C(1)
2 H(1) R(2) C(2)
3 H(1)⊕H(1) C(2) C(2)⊕ C(2)
4 H(2) H(2) C(4)
5 C(4) H(2)⊕H(2) C(4)⊕ C(4)
6 R(8) H(4) C(8)
7 R(8)⊕ R(8) C(8) C(8)⊕ C(8)
8 R(16) R(16) C(16)

Table: Clifford algebras Clk,0, Cl0,k and Clk
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Classification of real Clifford algebras

p\q 0 1 2 3 4 5 6 7 8
0 R R2 R(2) C(2) H(2) H2(2) H(4) C(8) R(16)
1 C R(2) R2(2) R(4) C(4) H(4) H2(4) H(8)
2 H C(2) R(4) R2(4) R(8) C(8) H(8)
3 H2 H(2) C(4) R(8) R2(8) R(16)
4 H(2) H2(2) H(4) C(8) R(16)
5 C(4) H(4) H2(4) H(8)
6 R(8) C(8) H(8)
7 R2(8) R(16)
8 R(16)

Table: Clifford algebras Clp,q
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Clifford modules

Define N(Clp,q) to be the Grothendieck group of real modules
of Clp,q, i.e. the additive free group generated by the irreducible
real modules of Clp,q.

Let ı : Clp,q → Clp+1,q denote the obvious inclusions of Clifford
algebras.

They give rise to the following maps on the Grothendieck
groups of modules

ı∗ : N(Clp+1,q)→ N(Clp,q)

Let us denote Ap,q = N(Clp,q)/ı∗N(Clp+1,q)
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Clifford modules,cont’d

k Clk,0 dk N(Clk,0) Ak

0 R 1 Z Z2
1 C 2 Z Z2
2 H(1) 4 Z 0
3 H⊕H 4 Z⊕ Z Z
4 H(2) 8 Z 0
5 C(4) 8 Z 0
6 R(8) 8 Z 0
7 R(8)⊕ R(8) 8 Z⊕ Z Z
8 R(16) 16 Z Z2

Table: Extensions of Clifford modules
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Clifford modules, cont’d

p\q 0 1 2 3 4 5 6 7
0 Z2 Z 0 0 0 Z 0 Z2
1 Z2 Z2 Z 0 0 0 Z 0
2 0 Z2 Z2 Z 0 0 0 Z
3 Z 0 Z2 Z2 Z 0 0 0
4 0 Z 0 Z2 Z2 Z 0 0
5 0 0 Z 0 Z2 Z2 Z 0
6 0 0 0 Z 0 Z2 Z2 Z
7 Z 0 0 0 Z 0 Z2 Z2

Table: Table of Ap,q
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Extension of Clifford Modules; Classifying spaces

Suppose we have a representation of Clk ,0 in O(16r)

JiJj + JjJi = −2δij

Let G1 be the subgroup of O(16r) that commutes with J1, G2
the subgroup of G1 that commutes with J2, etc. We get the
following chain of subgroups

O(16r)⊃
R2

U(8r)⊃
R3

Sp(4r)⊃
R4

Sp(2r)× Sp(2r)⊃
R5

Sp(2r)

⊃
R6

U(2r)⊃
R7

O(2r)⊃
R0

O(r)×O(r)⊃
R1

O(r) ⊃ . . .

Subsequent quotients parametrize the extensions of Clp,0 to
Clp+1,0. These are precisely the symmetric spaces (classifying
spaces) encountered before.
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THANKS
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