The Hitchin fibration and real forms through spectral data

Laura Schaposnik
Ruprecht-Karls Universität Heidelberg

School of Mathematics
University of Adelaide
June 2013
The Plan

1. **Higgs bundles.**
 - Classical Higgs bundles
 - G^c-Higgs bundles.

2. **The Hitchin fibration**
 - Spectral data approach.
 - G-Higgs bundles as fixed points.

3. **Spectral data approach for real forms**
 - Discrete fixed point set.
 - Pos. dim. fixed point set.
 - No fixed point set.

4. **Applications**
 - Connected components.
 - Topological invariants.

Based on:
- arXiv:1111.2550
- Spectral data also used in arXiv:1305.4638 with D. Baraglia.
CLASSICAL HIGGS BUNDLES

Σ compact Riemann surface of genus $g > 2$, canonical bundle $K = T^*\Sigma$.

Definition

A Higgs bundle on a compact Riemann surface Σ of genus $g > 1$, is a pair (E, Φ) for E a holomorphic vector bundle on Σ and Φ a section in $H^0(\Sigma, \text{End}(E) \otimes K)$. See example.
CLASSICAL HIGGS BUNDLES

\(\Sigma \) compact Riemann surface of genus \(g > 2 \), canonical bundle \(K = T^* \Sigma \).

Definition

A *Higgs bundle* on a compact Riemann surface \(\Sigma \) of genus \(g > 1 \), is a pair \((E, \Phi)\) for \(E \) a holomorphic vector bundle on \(\Sigma \) and \(\Phi \) a section in \(H^0(\Sigma, \text{End}(E) \otimes K) \). See example.

The *slope* of a vector bundle \(F \) be \(\mu := \deg(F)/\text{rk}(F) \). A Higgs bundle \((E, \Phi)\) is

- **stable** if for each \(\Phi \)-invariant subbundle \(F \) one has \(\mu(F) < \mu(E) \);
- **semi-stable** if for each \(\Phi \)-invariant subbundle \(F \) one has \(\mu(F) \leq \mu(E) \);
- **polystable** if \((E, \Phi) = (E_1, \Phi_1) \oplus (E_2, \Phi_2) \oplus \ldots (E_r, \Phi_r)\), where \((E_i, \Phi_i)\) is stable with \(\mu(E_i) = \mu(E) \) for all \(i \).

See example.
G^c-Higgs bundles

G^c be a complex semisimple Lie group.

Definition

A G^c-Higgs bundle is a pair (P, Φ) where

- P is a principal G^c-bundle over Σ,

- Higgs field Φ is a holomorphic section of the vector bundle $\text{Ad}P \otimes_\mathbb{C} K$,

for $\text{ad}P$ the vector bundle associated to the adjoint representation.

- Can extend stability notions. Then, call \mathcal{M}_{G^c} the moduli space of S-equivalence classes of semi-stable G^c-Higgs bundles.
G^c-Higgs bundles: Examples

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$-Higgs bundles.
G^c-Higgs Bundles: Examples

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$-Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:
- Classical Higgs bundles are given by $GL(n, \mathbb{C})$-Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:
 - $SL(n, \mathbb{C})$

\[(E, \Phi) \text{ for } \begin{cases} \text{E rk n vector bundle s.t. } \Lambda^n E \cong \mathcal{O} \\ \Phi : E \rightarrow E \otimes K \text{ s.t. } Tr(\Phi) = 0 \end{cases}\]
G^c-Higgs bundles: Examples

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$-Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:

 - $SL(n, \mathbb{C})$

 $$(E, \Phi) \text{ for } \begin{cases}
 E \text{ rank } n \text{ vector bundle s.t. } \Lambda^n E \cong \mathcal{O} \\
 \Phi : E \to E \otimes K \text{ s.t. } \text{Tr}(\Phi) = 0
 \end{cases}$$

 - $Sp(2n, \mathbb{C})$

 $$(E, \Phi) \text{ for } \begin{cases}
 E \text{ rank } 2n \text{ symplectic vector bundle} \\
 \text{symplectic form } \omega \text{ on } E \\
 \Phi : E \to E \otimes K \text{ s.t. } \omega(\Phi v, w) = -\omega(v, \Phi w)
 \end{cases}$$
Let d_i, for $i = 1, \ldots, k$, be the degrees of the basic invariant polynomials p_i on the Lie algebra \mathfrak{g}^c of G^c.

Definition

The Hitchin fibration is

$$h : \mathcal{M}_{G^c} \longrightarrow \mathcal{A}_{G^c} := \bigoplus_{i=1}^{k} H^0(\Sigma, K^{d_i}),$$

$$(E, \Phi) \mapsto (p_1(\Phi), \ldots, p_k(\Phi)).$$

- h is a proper map and $\dim \mathcal{A}_{G^c} = \dim \mathcal{M}_{G^c}/2$.
- The Hitchin map makes the Higgs bundles moduli space into an integrable system.
- For most classical groups (not $SO(2n, \mathbb{C})$), we take polynomials on $\text{Tr}(\Phi^i)$ for a basis of invariant polynomials.

See examples.

N.Hitchin ‘87
Spectral data approach

The idea

\[\mathcal{M}_{G^c} \rightarrow \mathcal{A}_{G^c} = \bigoplus_{i=1}^{k} H^0(\Sigma, K^{d_i}) \]

\[(E, \Phi) \rightarrow \text{char}(\Phi) \sim a = (a_1, \ldots, a_k) \]

S a \(d_k \)-fold cover of \(\Sigma \)

Spectral data

Data on \(S \)
SPECTRAL DATA APPROACH: $GL(n, \mathbb{C})$

$h : (E, \Phi) \mapsto \text{char}(\Phi) \in \bigoplus_{i=1}^{n} H^0(\Sigma, K^i) = \mathcal{A}_{GL(n, \mathbb{C})}$

$\text{char}(\Phi) = \eta^n + a_1 \eta^{n-1} + a_2 \eta^{n-2} + \ldots + a_{n-1} \eta + a_n$

So the fibration looks as follows...

N.Hitchin ‘87, ‘07
Spectral data approach: $GL(n, \mathbb{C})$

The construction

Starting with (S, M) we get a stable Higgs bundle (E, Φ) for

- The rank n vector bundle $E = \rho_* M$;
- The Higgs field Φ induced by

$$H^0(\rho^{-1}(\mathcal{U}), M) \xrightarrow{\eta} H^0(\rho^{-1}(\mathcal{U}), M \otimes \rho^* K)$$

for an open $\mathcal{U} \subset \Sigma$ by definition of direct image, gives

$$H^0(\mathcal{U}, \rho_* M) \rightarrow H^0(\mathcal{U}, \rho_* M \otimes K)$$

Pushes down to $\Phi : E \rightarrow E \otimes K$.
Starting with a stable \((E, \Phi)\) we get the spectral data \((S, M)\) for

- The smooth spectral curve \(S\) defined by \(\det(\eta - \rho^*\Phi) = 0\);
- For the line bundle \(U := \text{coker}(\eta - \rho^*\Phi)\), one has \(\rho_*U = E\).

The generic fibre of the Hitchin fibration is isomorphic to the Jacobian of the spectral curve \(S\).
SPECTRAL DATA APPROACH: $SL(n, \mathbb{C})$

As classical Higgs bundles + extra data.

$$\Lambda^n E = O \iff \Lambda^n \rho_* M \cong O$$

From [Beauville-Narasimhan-Ramanan, 1989],

$$\Lambda^n \rho_* M \cong Nm(M) \otimes K^{-n(n-1)/2}.$$

$$Nm : \text{Pic}(S) \rightarrow \text{Pic}(\Sigma)$$

$$\sum n_i p_i \mapsto \sum n_i \rho(p_i)$$

Then $\Lambda^n \rho_* M = O$ if and only if $Nm(M) \cong K^n(n-1)/2$, or equivalently

$$M \otimes \rho^* K^{-(n-1)/2} \in \text{Ker}(Nm) =: \text{Prym}(S, \Sigma).$$

The generic fibre of the Hitchin fibration is biholomorphically equivalent to the Prym variety Prym(S, Σ).
G-Higgs bundles

Set up

- G a real reductive Lie group;
- $\mathfrak{g}^\mathbb{C}$ complexified Lie algebra of G;
- $\mathfrak{m}^\mathbb{C}$ such that
 \[
 \mathfrak{g}^\mathbb{C} = \mathfrak{h}^\mathbb{C} \oplus \mathfrak{m}^\mathbb{C}
 \]
- $H \subset G$ the maximal compact subgroup;
- $\mathfrak{h}^\mathbb{C}$ complexified Lie algebra of H;
- $\text{Ad}_{|H^\mathbb{C}} : H^\mathbb{C} \to GL(\mathfrak{m}^\mathbb{C})$ is the isotropy representation.

Definition

A principal G-Higgs bundle is a pair (P, Φ) where

- P is a holomorphic principal $H^\mathbb{C}$-bundle;
- Φ is a holomorphic section of $(P \times_{\text{Ad}} \mathfrak{m}^\mathbb{C}) \otimes K$.

See example.
G-Higgs bundles as fixed points

in the fibres of the G^c Hitchin fibration

- G a real form of G^c fixed by the anti-holomorphic involution τ
- ρ the compact real form of G^c.
- $\sigma = \rho \tau$ a holomorphic involution.

$$\Theta : (E, \Phi) \mapsto (\sigma(E), -\sigma(\Phi))$$

N.Hitchin ‘87, ‘92
G-Higgs bundles as fixed points

In the fibres of the G^c Hitchin fibration

- G a real form of G^c fixed by the anti-holomorphic involution τ.
- ρ the compact real form of G^c.
- $\sigma = \rho \tau$ a holomorphic involution.

$$\Theta : (E, \Phi) \mapsto (\sigma(E), -\sigma(\Phi))$$

See Example.

N. Hitchin '87, García-Prada – Gothen – Mundet ’09
SPECTRAL DATA APPROACH I

Discrete intersection of \(M^{\Theta}_{G^c} \) with the smooth fibres

\(G \)-Higgs bundles for split real forms \((G = SL(n, \mathbb{R}), \ Sp(2n, \mathbb{R}), \ldots) \)

Theorem (*thesis*)

The intersection of \(M^{\Theta}_{G^c} \) with the smooth fibres of the Hitchin fibration

\[
 h : M_{G^c} \to \mathcal{A}_{G^c}.
\]

is the space of elements of order 2 over the regular locus of \(\mathcal{A}_{G^c} \).

So we can study the fibration through the monodromy action...

\(G = SL(2, \mathbb{R}) \) case (*thesis*)

What happens for other groups?
What kind of curve does $\text{char}(\Phi)$ define for a G-Higgs field Φ?

Generically, a smooth curve for $G = U(p,p), \, SU(p,p)$...

Definition

A $U(p,p)$-Higgs bundle over Σ is a pair (E, Φ) where $E = V \oplus W$ for V, W rank p vector bundles over Σ, and Φ the Higgs field given by

$$\Phi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix},$$

for $\beta : W \to V \otimes K$ and $\gamma : V \to W \otimes K$. When $\Lambda^p V \cong \Lambda^p W^*$, one has an $SU(p,p)$-Higgs bundle.

$$\det(x - \Phi) = x^{2p} + a_1x^{2p-2} + \ldots + a_{p-1}x^2 + a_p$$
Spectral data approach II
Towards the spectral data for $U(p,p)$-Higgs bundles

- Smooth S given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$;
- Smooth \tilde{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$;
for η tautological section of $\rho^* K$ and $a_i \in H^0(\Sigma, K^{2i})$.

Can be adapted to study $SU(p,p)$-Higgs bundles...
SPECTRAL DATA APPROACH II

Towards the spectral data for \(U(p, p)\)-Higgs bundles

- Smooth \(S\) given by \(\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0\);
- Smooth \(\bar{S}\) given by \(\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0\) for \(\xi = \eta^2\);

for \(\eta\) tautological section of \(\rho^*K\) and \(a_i \in H^0(\Sigma, K^{2i})\).

- \(M := \text{coker}(\rho^*\Phi - \eta)\) line bundle on \(S\).

\[\sigma^*M \cong M\]

\[\pi_*M = U_1 \oplus U_2\]

\[\rho_*M = V \oplus W\]

\[\bar{\rho}_*U_1 = V, \quad \bar{\rho}_*U_2 = W\]

Can be adapted to study \(SU(p, p)\)-Higgs bundles...
There is a one to one correspondence between $U(p, p)$-Higgs bundles $(V \oplus W, \Phi)$ on Σ with $\deg V > \deg W$ and non-singular spectral curve, and triples (\bar{S}, U_1, D) where

- $\bar{\rho} : \bar{S} \to \Sigma$ is an irreducible non-singular p-cover of Σ in the total space of K with equation
 $$\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0,$$
 for $a_i \in H^0(\Sigma, K^{2i})$, and ξ the tautological section of $\bar{\rho}^* K^2$.
- U_1 is a line bundle on \bar{S} whose degree is
 $$\deg U_1 = \deg V + (2p^2 - 2p)(g - 1)$$
- D is a positive subdivisor of the divisor of a_p of degree
 $$\tilde{m} = \deg W - \deg V + 2p(g - 1).$$
SPECTRAL DATA APPROACH II

SPECTRAL DATA FOR $U(p,p)$-Higgs bundles: the invariants

Since $\sigma^* M \cong M$ then

$$H^0(\rho^{-1}(U), M) = H^0(\rho^{-1}(U), M)^+ \oplus H^0(\rho^{-1}(U), M)^-$$

$$h^+ := \dim H^0(\rho^{-1}(U), M)^+ = \dim H^0(U, V),$$

$$h^- := \dim H^0(\rho^{-1}(U), M)^- = \dim H^0(U, W).$$

Use the L_σ Lefschetz number [Atiyah-Bott 1968] associated to the involution σ on S

$$L_\sigma = \sum (-1)^q \text{trace} \sigma|_{H^0,q(M)} = \text{trace} \sigma|_{H^0(M)} = h^+ - h^-$$

$$L_\sigma = \frac{(-\tilde{m}) + (4p(g-1) - \tilde{m})}{2} = 2p(g-1) - \tilde{m}.$$

$$\deg U_1 = v + (2p^2 - 2p)(g-1) = \frac{\deg M}{2} - \frac{\tilde{m}}{2},$$

$$\deg U_2 = w + (2p^2 - 2p)(g-1) = \frac{\deg M}{2} + \frac{\tilde{m}}{2} - 2p(g-1).$$
SPECTRAL DATA APPROACH III

No intersection of \mathcal{M}_{G^c} with the smooth fibres

What kind of curve does $\text{char}(\Phi)$ define for a G-Higgs field Φ?

Generically, a reducible curve for $G = Sp(2p, 2p), \ SU(p, q), \ldots \ (p \neq q)$

Definition

An $Sp(2p, 2p)$-Higgs bundle is a pair $(V \oplus W, \Phi)$ for V and W rank $2p$ symplectic vector bundles, and the Higgs field

$$\Phi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix} \text{ for } \begin{cases} \beta : W \rightarrow V \otimes K \\ \gamma : V \rightarrow W \otimes K \end{cases} \text{ and } \beta = -\gamma^T,$$

for γ^T the symplectic transpose of γ.

$$\det(x - \Phi) = (x^{2p} + a_1x^{2p-2} + \ldots + a_{p-1}x^2 + a_p)^2$$

Note this is the case of $SU^*(2p)$ and $SO^*(2p)$, current work w/ N. Hitchin to appear soon.
SPECTRAL DATA APPROACH III
TOWARDS THE SPECTRAL DATA FOR $Sp(2p, 2p)$-HIGGS BUNDLES

- Smooth S given by $\eta^{2p} + a_1\eta^{2p-2} + \ldots + a_{p-1}\eta^2 + a_p = 0$;
- Smooth \bar{S} given by $\xi^p + a_1\xi^{p-1} + \ldots + a_{p-1}\xi + a_p = 0$ for $\xi = \eta^2$;

for η tautological section of ρ^*K and $a_i \in H^0(\Sigma, K^{2i})$.

$$\sigma:\eta \rightarrow -\eta$$

$$S \xrightarrow{2:1} \bar{S} = S/\sigma$$

$$\rho \xrightarrow{p:1} \bar{\rho}$$
SPECTRAL DATA APPROACH III
Towards the spectral data for $Sp(2p, 2p)$-Higgs bundles

- Smooth S given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$;
- Smooth \tilde{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$;

for η tautological section of ρ^*K and $a_i \in H^0(\Sigma, K^{2i})$.

$M := \text{coker}(\rho^*\Phi - \eta)$ rank 2 vector bundle on S.

$\sigma^*M \cong M$

$\sigma : \eta \rightarrow -\eta$

$\begin{array}{ccc}
S & \xrightarrow{\pi} & \tilde{S} = S/\sigma \\
2:1 & & 2p:1 \\
\rho & & p:1 \\
\rho^*M = V \oplus W & \rightarrow & \Sigma \\
\end{array}$
Spectral data approach III
Spectral data for $Sp(2p, 2p)$-Higgs bundles (thesis)

There is a one to one correspondence between stable $Sp(2p, 2p)$-Higgs bundle $(E = V \oplus W, \Phi)$ on Σ for which $\text{char}(\Phi)^{1/2} = 0$ defines a smooth curve, and the spectral data (S, M) where

(a) the curve $\rho : S \to \Sigma$ is a smooth $2p$-fold cover with equation

$$\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0,$$

in the total space of K, where $a_i \in H^0(\Sigma, K^{2i})$, and η is the tautological section of $\rho^* K$. The curve S has a natural involution σ acting by $\eta \mapsto -\eta$;

(b) M is a rank 2 vector bundle on S with $\Lambda^2 M \cong \rho^* K^{-2p+1}$, and such that $\sigma^* M \cong M$. Over the fixed points of the involution, the vector bundle M is acted on by σ with eigenvalues $+1$ and -1.
APPLICATIONS

Connectivity for \(M_{U(p,p)} \)

\(U(p, p) \)-Higgs bundle of fixed degree \(\sim (\bar{S}, U_1, D) \) with fixed deg \(M \).

- The choice of \(D \) lies in the symmetric product \(S^{\tilde{m}}\Sigma \);
- Together with a section \(s \) of \(K^{2p}[-D] \) with distinct zeros, \(D \) gives the map \(a_p \in H^0(\Sigma, K^{2p}) \);
- The choice of \(a_p \) lies in a vector bundle of rank \((4p - 1)(g - 1) - \tilde{m}\) over \(S^{\tilde{m}}\Sigma \), whose total space is \(E \); There is a natural map

\[
\alpha : E \rightarrow H^0(\Sigma, K^{2p})
\]

- The choice of \(\bar{S} \) is given by a point in a Zariski open \(A \) in

\[
H^0(\Sigma, K^{2p}) \oplus \bigoplus_{i=1}^{p-1} H^0(\Sigma, K^{2i})
\]

- The choice of \(U_1 \) is given by a fibration of Jacobians \(Jac \) over \(A \);
APPLICATIONS

Connectivity for $\mathcal{M}_{U(p,p)}$ (thesis)

Each pair of invariants (m, \tilde{m}) labels exactly one connected component of $\mathcal{M}_{U(p,p)}$ which intersects the non-singular fibres of the Hitchin fibration

$$\mathcal{M}_{GL(2p,\mathbb{C})} \rightarrow \mathcal{A}_{GL(2p,\mathbb{C})}.$$

This component is given by the fibration of $\alpha^* \mathcal{J}ac$ over a Zariski open subset in

$$\mathcal{E} \bigoplus_{i=1}^{p-1} H^0(\Sigma, K^{2i}).$$

$\mathcal{M}_{U(p,q)}$ via Morse theory by Bradlow–García-Prada–Gothen ‘02
Applications
Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

$Sp(2p,2p)$-Higgs bundles with smooth spectral curve $\sim (S,M)$ for M rank 2 vector bundle with $\Lambda^2 M \cong \rho^* K^{-2p+1}$ and conditions on $\sigma^* M \cong M$.

\[\sigma^* M \cong M \]
\[\sigma : \eta \rightarrow -\eta \]
\[S \xrightarrow{\pi} \bar{S} = S/\sigma \]
\[\rho \]
\[\rho_* M = V \oplus W \]
\[\Sigma \]
Applications
Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

$Sp(2p,2p)$-Higgs bundles with smooth spectral curve $\sim (S, M)$ for M rank 2 vector bundle with $\Lambda^2 M \cong \rho^* K^{-2p+1}$ and conditions on $\sigma^* M \cong M$.

\[
\begin{align*}
\sigma^* M &\cong M \\
\rho^* M &= V \oplus W \\
\bar{\rho} &\rightarrow \left\{ \begin{array}{c} 2p:1 \\ p:1 \end{array} \right. \\
\pi &\rightarrow \bar{S} = S/\sigma
\end{align*}
\]
Applications

Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

$Sp(2p,2p)$-Higgs bundles with smooth spectral curve $\sim (S,M)$ for M rank 2 vector bundle with $\Lambda^2M \cong \rho^*K^{-2p+1}$ and conditions on $\sigma^*M \cong M$.

- $N^\sigma =$ fixed point set of σ in the moduli space of stable rank 2 vector bundles of determinant ρ^*K^{2p-1};
- P_a the moduli space parabolic rank 2 vector bundles on \bar{S} whose marked points are the fixed points of the involution σ, whose weights are $1/2$ and whose flag is by the distinguished eigenspaces corresponding to the eigenvalue -1 of σ [Andersen-Grove 2006];
 - Vector bundles in P_a are stable [Nitsure 86];
 - $P_a = P_a^+ \sqcup P_a^c$ through a natural involution on P_a;
 - P_a^c is connected [Nitsure 86];

The choice of M is given by an element in

$$N^\sigma \cong P_a^c$$
The space $\mathcal{M}_{Sp(2p,2p)}^s$ is given by the fibration of \mathcal{P}_a^c, over a Zariski open set in the space

$$\bigoplus_{i=1}^{p} H^0(\Sigma, K^{2i}).$$

$\mathcal{M}_{Sp(2p,2q)}$ via Morse Theory by García-Prada–Oliveira ‘12
Applications

Topological invariants

Milnor-Wood type inequalities for the Toledo invariant $\tau(v, w)$ associated to G-Higgs bundles appear naturally from the spectral data...

- $U(p, p)$-Higgs bundles, for which $\tau(v, w) = v - w$
 - The invariant $\tilde{m} = w - v + 2p(g - 1)$ is the number of fixed points of σ with certain property.
 - Fixed points of σ are zeros of $a_p \in H^0(\Sigma, K^{2p})$, thus
 $$0 \leq w - v + 2p(g - 1) \leq 4p(g - 1)$$
 $$|\tau(v, w)| = |v - w| \leq 2p(g - 1)$$

- $SU(p, p)$-Higgs bundles, for which $\tau(v, w) = v = -w$
 - Methods for $U(p, p)$ can be adapted, and we get
 $$|\tau(v, w)| = |v| \leq p(g - 1)$$

- Also for $Sp(2n, \mathbb{R})$, $Sp(2p, 2p)$... and possibly others?
Thank you for listening!