Moduli of special Lagrangian and coassociative submanifolds

David Baraglia

The Australian National University
Canberra, Australia

July 19, 2010
Moduli of coassociative submanifolds and semi-flat G_2-manifolds
arXiv:0902.2135v2
Contents

1 Some dualities

2 G_2 geometry

3 Deformations of coassociative submanifolds

4 Coassociative fibrations

5 Semi-flat coassociative fibrations
Mirror symmetry and SYZ

5 string theories and M-theory linked by dualities
5 string theories and M-theory linked by dualities

- type IIA - IIB duality leads to Mirror symmetry between Calabi-Yau manifolds $X \iff Y$
5 string theories and M-theory linked by dualities

- type IIA - IIB duality leads to Mirror symmetry between Calabi-Yau manifolds $X \iff Y$

Strominger Yau Zaslow conjecture: X and Y are special Lagrangian fibrations over same base with dual fibres
Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold
Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold by ‘brane reduction’:
Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold by ‘brane reduction’:

- M-theory $K3$-fibration \iff Heterotic T^3-fibration + flux
Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold by ‘brane reduction’:

- M-theory $K3$-fibration \iff Heterotic T^3-fibration + flux
- M-theory T^4-fibration \iff IIB T^3-fibration + flux
More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold by ‘brane reduction’:

- M-theory $K3$-fibration \iff Heterotic T^3-fibration + flux
- M-theory T^4-fibration \iff IIB T^3-fibration + flux

so we would like to know about coassociative fibrations and the possibility of dual fibrations
Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_2-manifold by ‘brane reduction’:

- M-theory $K3$-fibration \iff Heterotic T^3-fibration + flux
- M-theory T^4-fibration \iff IIB T^3-fibration + flux

so we would like to know about coassociative fibrations and the possibility of dual fibrations

- coassociative \iff coassociative?
- coassociative \iff special Lagrangian + flux?
1. Some dualities

2. G_2 geometry

3. Deformations of coassociative submanifolds

4. Coassociative fibrations

5. Semi-flat coassociative fibrations
here G_2 means the compact form in $SO(7)$
A quick look at G_2

- here G_2 means the compact form in $SO(7)$
- stabiliser of a 3-form ϕ on \mathbb{R}^7
A quick look at G_2

- here G_2 means the compact form in $SO(7)$
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- also preserves a 4-form $\psi = \ast \phi$
A quick look at G_2

- here G_2 means the compact form in $SO(7)$
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- also preserves a 4-form $\psi = \ast \phi$
- standard 3-form:

$$\phi = e^{123} + e^1 \wedge (e^{45} + e^{67}) + e^2 \wedge (e^{46} - e^{57}) + e^3 \wedge (-e^{47} - e^{56})$$
A quick look at G_2

- here G_2 means the compact form in $SO(7)$
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- also preserves a 4-form $\psi = \ast \phi$
- standard 3-form:
 \[\phi = e^{123} + e^1 \wedge (e^{45} + e^{67}) + e^2 \wedge (e^{46} - e^{57}) + e^3 \wedge (-e^{47} - e^{56}) \]
- standard 4-form:
 \[\psi = e^{4567} + e^{23} \wedge (e^{45} + e^{67}) + e^{31} \wedge (e^{46} - e^{57}) + e^{12} \wedge (-e^{47} - e^{56}) \]
An algebra over \mathbb{R} is normed if it has an inner product such that

$$|xy| = |x||y|$$
Normed Algebras

An algebra over \mathbb{R} is *normed* if it has an inner product such that

$$|xy| = |x||y|$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)
- \mathbb{O} - octonions (8-d)
An algebra over \mathbb{R} is \textit{normed} if it has an inner product such that

$$|xy| = |x||y|$$

there are only four:

- \mathbb{R} - real numbers (1-d)
Normed Algebras

An algebra over \mathbb{R} is *normed* if it has an inner product such that

$$|xy| = |x||y|$$

there are only four:
- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)
- \mathbb{O} - octonions (8-d)
An algebra over \mathbb{R} is *normed* if it has an inner product such that

$$|xy| = |x||y|$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)
An algebra over \mathbb{R} is \textit{normed} if it has an inner product such that

$$|xy| = |x||y|$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)
- \mathbb{O} - octonions (8-d)
G_2 and the octonions

G_2 and \mathbb{O} are closely related:

G_2 and \mathbb{O} are closely related:
G_2 and the octonions

G_2 and \mathcal{O} are closely related:

- $G_2 = \text{Aut}(\mathcal{O})$
G_2 and the octonions

G_2 and \mathcal{O} are closely related:

- $G_2 = \text{Aut}(\mathcal{O})$
- $\text{Im}(\mathcal{O})$ is the 7-dimensional representation of G_2

Relation to the 3-form:

$$\phi(x, y, z) = \langle x \times y, z \rangle$$
G_2 and the octonions

G_2 and \mathbb{O} are closely related:

- $G_2 = \text{Aut}(\mathbb{O})$
- $\text{Im}(\mathbb{O})$ is the 7-dimensional representation of G_2

Octonion multiplication gives rise to the cross product

$$\times : \text{Im}(\mathbb{O}) \otimes \text{Im}(\mathbb{O}) \to \text{Im}(\mathbb{O})$$

$$x \times y = \text{Im}(xy)$$
G_2 and \mathbb{O} are closely related:

- $G_2 = \text{Aut}(\mathbb{O})$
- $\text{Im}(\mathbb{O})$ is the 7-dimensional representation of G_2

Octonion multiplication gives rise to the \textit{cross product}

$$\times : \text{Im}(\mathbb{O}) \otimes \text{Im}(\mathbb{O}) \to \text{Im}(\mathbb{O})$$

$$x \times y = \text{Im}(xy)$$

Relation to the 3-form:

$$\phi(x, y, z) = \langle x \times y, z \rangle$$
A 3-dimensional subspace $A \subset \text{Im}(\Theta)$ is *associative* if one of the (equivalent) holds:
A 3-dimensional subspace $A \subset \text{Im}(\mathcal{O})$ is *associative* if one of the (equivalent) holds:

- A is closed under the cross product
A 3-dimensional subspace $\mathcal{A} \subset \text{Im}(\mathcal{O})$ is *associative* if one of the (equivalent) holds:

- \mathcal{A} is closed under the cross product
- $\text{Re}(\mathcal{O}) \oplus \mathcal{A} \subset \mathcal{O}$ is a subalgebra
 (an associative subalgebra $\cong \mathbb{H}$)
A 3-dimensional subspace $\mathcal{A} \subset \text{Im}(\Theta)$ is *associative* if one of the (equivalent) holds:

- \mathcal{A} is closed under the cross product
- $\text{Re}(\Theta) \oplus \mathcal{A} \subset \Theta$ is a subalgebra

 (an associative subalgebra $\simeq \mathbb{H}$)
- \mathcal{A} can be oriented such that $\phi|_\mathcal{A} = d\text{vol}_\mathcal{A}$

 i.e. \mathcal{A} is a calibrated subspace with respect to the calibration ϕ
A 4-dimensional subspace $C \subset \text{Im}(\mathcal{O})$ is coassociative if one of the (equivalent) holds:
A 4-dimensional subspace $\mathcal{C} \subset \text{Im}(\mathcal{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^\perp is associative
A 4-dimensional subspace $\mathcal{C} \subset \text{Im} (\mathcal{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^\perp is associative
- For $x, y \in \mathcal{C}$, $x \times y \in \mathcal{C}^\perp$
Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \text{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^\perp is associative
- For $x, y \in \mathcal{C}$, $x \times y \in \mathcal{C}^\perp$
- \mathcal{C} is a calibrated subspace with respect to ψ: $\psi|_{\mathcal{C}} = d\text{vol}_{\mathcal{C}}$
A 4-dimensional subspace $C \subset \text{Im}(\Omega)$ is coassociative if one of the (equivalent) holds:

- C^\perp is associative
- For $x, y \in C$, $x \times y \in C^\perp$
- C is a calibrated subspace with respect to ψ: $\psi|_C = dvol_C$
- $\phi|_C = 0$
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2.

\[\star \phi \in \Omega^4(X) \]
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(\mathbb{O})$
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(\mathcal{O})$

X has:
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(\mathcal{O})$

X has:

- a cross product $\times : TX \otimes TX \to TX$
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(\mathcal{O})$

X has:

- a cross product $\times : TX \otimes TX \to TX$
- a Riemannian metric g
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(O)$

X has:

- a cross product $\times : TX \otimes TX \rightarrow TX$
- a Riemannian metric g
- a 3-form $\phi \in \Omega^3(X)$
A G_2-structure on a 7-manifold is a reduction of structure of TX to G_2

- each tangent space of X has the structure of $\text{Im}(\Theta)$

X has:

- a cross product $\times : TX \otimes TX \to TX$
- a Riemannian metric g
- a 3-form $\phi \in \Omega^3(X)$
- a 4-form $\psi = *\phi \in \Omega^4(X)$
A G_2-manifold is a Riemannian 7-manifold with holonomy in G_2.

G_2-manifolds
A \textit{G}_2\text{-manifold} is a Riemannian 7-manifold with holonomy in \textit{G}_2.

- \textit{G}_2 is one of the exceptional holonomy groups in Berger’s classification.
A \textit{G}_2\text{-manifold} is a Riemannian 7-manifold with holonomy in \textit{G}_2

- \textit{G}_2 is one of the exceptional holonomy groups in Berger’s classification

so a \textit{G}_2\text{-manifold} \textit{X} is a Riemannian 7-manifold with a \textit{G}_2\text{-structure} such that

\[\nabla \phi = 0 \]
A \textit{G}_2\text{-manifold} is a Riemannian 7-manifold with holonomy in \textit{G}_2

- \textit{G}_2 is one of the exceptional holonomy groups in Berger’s classification

so a \textit{G}_2\text{-manifold} \textit{X} is a Riemannian 7-manifold with a \textit{G}_2\text{-structure} such that

\[\nabla \phi = 0 \]

equivalently: \textit{X} is a 7-manifold with a \textit{G}_2\text{-structure} such that

\[d\phi = 0 \]
\[d\psi = 0 \]
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:

1. The tangent spaces of \mathcal{A} are associative subspaces of T_X.
2. \mathcal{A} is a calibrated submanifold with respect to ϕ.

Similarly, define coassociative submanifolds $\mathcal{C} \to X$:

1. \mathcal{C} is a calibrated submanifold with respect to ψ.
2. \mathcal{C} is coassociative if $\phi|_\mathcal{C} = 0$.
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of TX
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
- the tangent spaces of \mathcal{A} are associative subspaces of TX
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of TX
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ

Similarly define coassociative submanifolds $\mathcal{C} \to X$
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
- the tangent spaces of \mathcal{A} are associative subspaces of TX
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ

similarly define coassociative submanifolds $\mathcal{C} \to X$
- \mathcal{C} is a calibrated submanifold wrt ψ
A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
- the tangent spaces of \mathcal{A} are associative subspaces of TX
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ

similarly define coassociative submanifolds $\mathcal{C} \to X$
- \mathcal{C} is a calibrated submanifold wrt ψ
- \mathcal{C} is coassociative iff $\phi|_{\mathcal{C}} = 0$
First order deformations

Let $\mathcal{C} \rightarrow X$ be a \textit{compact} coassociative submanifold
Let $\mathcal{C} \rightarrow X$ be a *compact* coassociative submanifold then $N\mathcal{C} \simeq \bigwedge^2 C \oplus T^*\mathcal{C}$.
First order deformations

Let \(C \to X \) be a compact coassociative submanifold then \(NC \simeq \bigwedge^2_+ T^*C \):

\[\nu \mapsto \iota_\nu \phi|_C \]
First order deformations

Let $C \to X$ be a compact coassciative submanifold then $NC \simeq \wedge^2_{+} T^*C$:

$$\nu \mapsto \iota_{\nu} \phi|_C$$

given a normal vector field ν, we can deform C in the direction ν.

First order deformations

Let $\mathcal{C} \to X$ be a compact coassociative submanifold then $N\mathcal{C} \cong \wedge^2_+ T^*\mathcal{C}$:

$$\nu \mapsto \iota_\nu \phi|_\mathcal{C}$$

given a normal vector field ν, we can deform \mathcal{C} in the direction ν

Theorem (McLean)

A normal vector field ν represents a first order deformation through coassociative submanifolds iff

$$\iota_\nu \phi|_\mathcal{C} \text{ is closed},$$

hence a harmonic self-dual form.
No obstructions to extending a first order deformation to an actual family
No obstructions to extending a first order deformation to an actual family

we then have a smooth moduli space \(\mathcal{M} \) of deformations of \(C \) through
coassociative submanifolds
No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of C through
coassociative submanifolds
the tangent space $T_C \mathcal{M}$ of \mathcal{M} at C is naturally isomorphic to $\mathcal{H}^2_+(C, \mathbb{R})$
No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of C through
coassociative submanifolds
the tangent space T_CM of \mathcal{M} at C is naturally isomorphic to $\mathcal{H}^2_+(C, \mathbb{R})$
$$\dim(\mathcal{M}) = b^2_+(C)$$
No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of \mathcal{C} through coassociative submanifolds
the tangent space $T_{\mathcal{C}}\mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}^2_+(\mathcal{C}, \mathbb{R})$

$$\dim(\mathcal{M}) = b^2_+(\mathcal{C})$$

notation: for $X \in T_{\mathcal{C}}\mathcal{M}$ let ω_X be the corresponding harmonic form
Let $X, Y \in T_{C\mathcal{M}}$

define a metric $g_{\mathcal{M}}$ on \mathcal{M}:
Let $X, Y \in T_{CM}$

define a metric g_M on \mathcal{M}:

$$g_M(X, Y) = \int_C \omega_X \wedge \omega_Y$$

$$= \langle [\omega_X] \sim [\omega_Y], [C] \rangle$$

called the L^2 moduli space metric
For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $C \in \mathcal{M}$.

Theorem: α is closed, so (locally) we have a function $u: M \to H^2(C, \mathbb{R})$ such that $\alpha = du$.

$u^*(X) = \alpha(X) = [\omega_X]$.
For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $C \in \mathcal{M}$

get a (locally defined) $H^2(C, \mathbb{R})$-valued 1-form α:

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\omega_X] \in H^2(C, \mathbb{R})$$
Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed \(C \in \mathcal{M} \)

get a (locally defined) \(H^2(C, \mathbb{R}) \)-valued 1-form \(\alpha \):

\[
T\mathcal{M} \ni X \mapsto \alpha(X) = [\omega_X] \in H^2(C, \mathbb{R})
\]

Theorem

\(\alpha \) is closed, so (locally) we have a function

\[
u : \mathcal{M} \to H^2(C, \mathbb{R})
\]

such that \(\alpha = du \):

\[
u_*(X) = \alpha(X) = [\omega_X]
\]
Then we have

\[g_M(X, Y) = \langle [\omega_X] \sim [\omega_Y], [C] \rangle \]
\[= \langle u_*(X) \sim u_*(Y), [C] \rangle \]
Then we have

\[g_{\mathcal{M}}(X, Y) = \langle [\omega_X] \sim [\omega_Y], [C] \rangle \]

\[= \langle u_*(X) \sim u_*(Y), [C] \rangle \]

so the moduli space metric is the pull-back under \(u \) of the intersection form on \(H^2(C, \mathbb{R}) \)
Then we have

\[g_M(X, Y) = \langle [\omega_X] \sim [\omega_Y], [C] \rangle \]
\[= \langle u_*(X) \sim u_*(Y), [C] \rangle \]

so the moduli space metric is the pull-back under \(u \) of the intersection form on \(H^2(C, \mathbb{R}) \)

\(M \) is immersed as a maximal positive definite submanifold of \(H^2(C, \mathbb{R}) \).
Theorem

Let X be compact and have holonomy $= G_2$
Compact Fibrations

Theorem

Let X be compact and have holonomy $= G_2$

then any coassociative fibration $\pi : X \rightarrow B$ must degenerate

(i.e. π can’t be a submersion everywhere)
Proof (1)

Assume $F \to X \to B$ is a non-degenerate fibration
Assume \(F \to X \to B \) is a non-degenerate fibration

\[\text{Hol}(X) = G_2 \Rightarrow \pi_1(X) \text{ is finite} \]

suffices to take \(X \) simply connected

\[B \text{ is a homotopy 3-sphere and } F \text{ is simply connected} \]
Assume $F \to X \to B$ is a non-degenerate fibration

$\text{Hol}(X) = G_2 \Rightarrow \pi_1(X)$ is finite

suffices to take X simply connected

also suffices to take F connected and B simply connected
Assume $F \to X \to B$ is a non-degenerate fibration

$\text{Hol}(X) = G_2 \Rightarrow \pi_1(X)$ is finite

suffices to take X simply connected

also suffices to take F connected and B simply connected

Then B is a homotopy 3-sphere and F is simply connected
Leray-Serre spectral sequence \Rightarrow isomorphisms

\[i^* : H^2(X, \mathbb{R}) \to H^2(F, \mathbb{R}) \]
\[\pi^* : H^3(B, \mathbb{R}) \to H^3(X, \mathbb{R}) \]
Proof (2)

Leray-Serre spectral sequence \Rightarrow isomorphisms

\[i^* : H^2(X, \mathbb{R}) \to H^2(F, \mathbb{R}) \]
\[\pi^* : H^3(B, \mathbb{R}) \to H^3(X, \mathbb{R}) \]

\[[\phi] = c\pi^*([dvol_B]), \quad c \neq 0, \quad \int_B dvol_B = 1 \]
Proof (2)

Leray-Serre spectral sequence \Rightarrow isomorphisms

\[i^* : H^2(X, \mathbb{R}) \to H^2(F, \mathbb{R}) \]
\[\pi^* : H^3(B, \mathbb{R}) \to H^3(X, \mathbb{R}) \]

\[[\phi] = c\pi^*([dvol_B]), \quad c \neq 0, \quad \int_B dvol_B = 1 \]

then for a closed 4-form μ on X

\[\int_X \mu \wedge \phi = c \int_F i^* \mu \]
Recall: for a G_2-manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by

$$\int_X \alpha \wedge \beta \wedge \phi$$

is negative definite
Recall: for a G_2-manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by

$$\int_X \alpha \wedge \beta \wedge \phi$$

is negative definite

hence the intersection form on F is negative definite
Recall: for a G_2-manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by

$$\int_X \alpha \wedge \beta \wedge \phi$$

is negative definite

hence the intersection form on F is negative definite

(Donaldson): intersection form on F is diagonal
(i.e. of form $\text{diag}(-1, -1, \ldots, -1)$)
Now X is spin and NF is trivial
Now X is spin and NF is trivial $\Rightarrow F$ is spin
Proof (4)

Now X is spin and NF is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even
Now X is spin and NF is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even $\Rightarrow b^2(F) = 0$
Proof (4)

Now X is spin and NF is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even $\Rightarrow b^2(F) = 0$

also recall for a G_2-manifold (again with $b^1(X) = 0$)

$$\int_X p_1(X) \wedge \phi < 0$$
Now X is spin and NF is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even $\Rightarrow b^2(F) = 0$
also recall for a G_2-manifold (again with $b^1(X) = 0$)

$$\int_X p_1(X) \wedge \phi < 0$$

but this is

$$c \int_F i^* p_1(X) = c \int_F p_1(F) = 0$$

by Hirzebruch signature theorem \Rightarrow contradiction
What do the singularities look like?
What do the singularities look like?

as an example of what to expect we construct compact coassociative fibrations of G_2-structures with torsion ($d\phi \neq 0$)
What do the singularities look like?

as an example of what to expect we construct compact coassociative fibrations of G_2-structures with torsion ($d\phi \neq 0$)

one would hope that metric could be adjusted to produce genuine G_2-manifolds
Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic $K3$-fibration)
Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic $K3$-fibration)

the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$
Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic $K3$-fibration)

the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$

then M is also a $\text{Spin}(7)$-manifold with 4-form

$$\Phi = \frac{1}{2} \omega^2_i + \frac{1}{2} \omega^2_j - \frac{1}{2} \omega^2_K$$
Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic $K3$-fibration) the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$ then M is also a $\text{Spin}(7)$-manifold with 4-form

$$\Phi = \frac{1}{2} \omega^2_i + \frac{1}{2} \omega^2_j - \frac{1}{2} \omega^2_K$$

and $\pi : M \to \mathbb{CP}^2$ is a fibration by Cayley 4-folds
Now take $S^3 \subset \mathbb{CP}^2$ that encloses a singularity of the curve.
Now take $S^3 \subset \mathbb{CP}^2$ that encloses a singularity of the curve
then $S^3 \cap \Delta$ is a smooth link
Now take $S^3 \subset \mathbb{CP}^2$ that encloses a singularity of the curve

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot
Now take $S^3 \subset \mathbb{CP}^2$ that encloses a singularity of the curve

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot

$\pi^{-1}(S^3)$ is an almost G_2-manifold ($d\phi \neq 0$, $d\psi = 0$) with coassociative fibration degenerating over $S^3 \cap \Delta$
Now take $S^3 \subset \mathbb{CP}^2$ that encloses a singularity of the curve

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot

$\pi^{-1}(S^3)$ is an almost G_2-manifold ($d\phi \neq 0$, $d\psi = 0$) with coassociative fibration degenerating over $S^3 \cap \Delta$

ψ closed \implies the fibres are minimal submanifolds, could we flow to a fibration of a G_2-manifold?
Let $\pi : X \to B$ be a coassociative fibration with compact fibres.
Theorem

Let $\pi : X \to B$ be a coassociative fibration with compact fibres. B can be given a metric g_B such that $\pi : X \to B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T^4 or $K3$).
Riemannian submersion case

Theorem

Let $\pi : X \to B$ be a coassociative fibration with compact fibres

B can be given a metric g_B such that $\pi : X \to B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T^4 or $K3$)

in this case B is the moduli space of deformations and

$$g_B = \frac{1}{2\text{vol}(F)}g_{L^2}$$
Proof

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$
Proof

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$

pick a basis e_1, e_2, e_3 for $T_b B$, let \tilde{e}_i be the horizontal lifts
Proof

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$

pick a basis e_1, e_2, e_3 for T_bB, let \tilde{e}_i be the horizontal lifts

let $\omega_i = \iota_{\tilde{e}_i} \phi|_F$ be the corresponding harmonic forms, then

$$\omega_i \wedge \omega_j = 2g(\tilde{e}_i, \tilde{e}_j) d\text{vol}_F$$
Proof

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$

pick a basis e_1, e_2, e_3 for $T_b B$, let \tilde{e}_i be the horizontal lifts

let $\omega_i = \iota_{\tilde{e}_i} \phi|_F$ be the corresponding harmonic forms, then

$$\omega_i \wedge \omega_j = 2g(\tilde{e}_i, \tilde{e}_j) d\text{vol}_F$$

follows that we can find Hyperkähler forms iff π is a Riemannian submersion
1 Some dualities

2 G_2 geometry

3 Deformations of coassociative submanifolds

4 Coassociative fibrations

5 Semi-flat coassociative fibrations
A coassociative fibration $\pi : X \to B$ is \textit{semi-flat} if there is a T^4-action of isomorphisms such that the orbits are the fibres of π. π is a Riemannian submersion and B is the moduli space of deformations. (locally) we have the moduli space map $u : B \to H_2(T^4, \mathbb{R}) \cong \mathbb{R}^3$.

David Baraglia (ANU) Moduli of special Lagrangian and coassociative July 19, 2010 33 / 39
Definition

A coassociative fibration $\pi : X \to B$ is semi-flat if

- there is a T^4-action of isomorphisms such that the orbits are the fibres of π.
Definition

A coassociative fibration $\pi : X \to B$ is *semi-flat* if

- there is a T^4-action of isomorphisms such that the orbits are the fibres of π

π is a Riemannian submersion and B is the moduli space of deformations
Definition

A coassociative fibration \(\pi : X \to B \) is semi-flat if

- there is a \(T^4 \)-action of isomorphisms such that the orbits are the fibres of \(\pi \)

\(\pi \) is a Riemannian submersion and \(B \) is the moduli space of deformations

(locally) we have the moduli space map

\[
u : B \to H^2(T^4, \mathbb{R}) \cong \mathbb{R}^{3,3}
\]
Semi-flat fibrations are locally constructed from the following data:
Semi-flat fibrations are locally constructed from the following data:
- an oriented 3-manifold B
Semi-flat fibrations are locally constructed from the following data:

- an oriented 3-manifold B
- $u : B \to H^2(T^4, \mathbb{R}) \cong \mathbb{R}^{3,3}$ that maps TB to positive definite subspaces
Semi-flat fibrations are locally constructed from the following data:

- an oriented 3-manifold B
- $u : B \to H^2(T^4, \mathbb{R}) \cong \mathbb{R}^{3,3}$ that maps TB to positive definite subspaces
- τ a positive constant (representing the fibre volume)
Give B the metric

$$g_B = \frac{1}{2\tau} u^*(g_{3,3})$$
Give B the metric

$$g_B = \frac{1}{2\tau} u^*(g_{3,3})$$

define a 3-form ϕ on $B \times \mathbb{R}^4/Z^4$
Give B the metric

$$g_B = \frac{1}{2\tau} u^*(g_{3,3})$$

define a 3-form ϕ on $B \times \mathbb{R}^4/\mathbb{Z}^4$

$$\phi = d\text{vol}_B + du$$

where $u : B \to H^2(T^4, \mathbb{R})$ is thought of as a 2-form

$$u(b) = u_{ij}(b) dx^{ij}$$
Local form (3)

- ϕ is closed
Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form
Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form

Theorem

$$d\psi = 0 \iff u \text{ is a harmonic map}$$

i.e. $u : B \to H^2(T^4, \mathbb{R})$ is a minimal immersion
Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form

Theorem

\[d\psi = 0 \text{ iff } u \text{ is a harmonic map} \]

i.e. \(u : B \to H^2(T^4, \mathbb{R}) \) is a minimal immersion

all semi-flat fibrations have this form locally
Suppose that $u : B \to \mathbb{R}^{3,3}$ is conical:

$$B = (0, \infty) \times \Sigma$$

$$g_B = dr^2 + r^2 g_\Sigma$$
Suppose that $u : B \to \mathbb{R}^{3,3}$ is conical:

$$B = (0, \infty) \times \Sigma$$

$$g_B = dr^2 + r^2 g_{\Sigma}$$

this corresponds to a (positive definite) minimal surface in the quadric

$$Q = \{ x \in \mathbb{R}^{3,3} | \langle x, x \rangle = 1 \}$$
A particular class of minimal surfaces into Q correspond to the equations:

\[
\begin{align*}
 u_{zz} &= -e^v - u - e^u, \\
 v_{zz} &= q e^v - v + e^v - u.
\end{align*}
\]
Affine Toda equations

A particular class of minimal surfaces into Q correspond to the equations:

\[u_{zz} = -e^{v-u} - e^u, \]
\[v_{zz} = q\bar{q}e^{-v} + e^{v-u}. \]

where q is a holomorphic cubic differential

- this is a set of affine Toda equations
THANK YOU