Moduli of special Lagrangian and coassociative submanifolds

David Baraglia

The Australian National University
Canberra, Australia

July 19, 2010

This talk is based on

Moduli of coassociative submanifolds and semi-flat G_{2}-manifolds arXiv:0902.2135v2

Contents

(1) Some dualities

(2) G_{2} geometry

(3) Deformations of coassociative submanifolds

4 Coassociative fibrations

(5) Semi-flat coassociative fibrations

Mirror symmetry and SYZ

5 string theories and M-theory linked by dualities

Mirror symmetry and SYZ

5 string theories and M-theory linked by dualities

- type IIA - IIB duality leads to Mirror symmetry between Calabi-Yau manifolds $X \Longleftrightarrow Y$

Mirror symmetry and SYZ

5 string theories and M-theory linked by dualities

- type IIA - IIB duality leads to Mirror symmetry between Calabi-Yau manifolds $X \Longleftrightarrow Y$

Strominger Yau Zaslow conjecture: X and Y are special Lagrangian fibrations over same base with dual fibres

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold by 'brane reduction':

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold by 'brane reduction':

- M-theory K 3-fibration \Longleftrightarrow Heterotic T^{3}-fibration + flux

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold by 'brane reduction':

- M-theory $K 3$-fibration \Longleftrightarrow Heterotic T^{3}-fibration + flux
- M-theory T^{4}-fibration \Longleftrightarrow IIB T^{3}-fibration + flux

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold by 'brane reduction':

- M-theory $K 3$-fibration \Longleftrightarrow Heterotic T^{3}-fibration + flux
- M-theory T^{4}-fibration \Longleftrightarrow IIB T^{3}-fibration + flux
so we would like to know about coassociative fibrations and the possibility of dual fibrations

More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian fibration is a coassociative fibration of a G_{2}-manifold by 'brane reduction':

- M-theory $K 3$-fibration \Longleftrightarrow Heterotic T^{3}-fibration + flux
- M-theory T^{4}-fibration \Longleftrightarrow IIB T^{3}-fibration + flux
so we would like to know about coassociative fibrations and the possibility of dual fibrations
- coassociative \Longleftrightarrow coassociative ?
- coassociative \Longleftrightarrow special Lagrangian + flux?

Contents

(1) Some dualities

(2) G_{2} geometry

(3) Deformations of coassociative submanifolds

4 Coassociative fibrations

(5) Semi-flat coassociative fibrations

A quick look at G_{2}

- here G_{2} means the compact form in $\mathrm{SO}(7)$

A quick look at G_{2}

- here G_{2} means the compact form in $\mathrm{SO}(7)$
- stabiliser of a 3 -form ϕ on \mathbb{R}^{7}

A quick look at G_{2}

- here G_{2} means the compact form in $\mathrm{SO}(7)$
- stabiliser of a 3 -form ϕ on \mathbb{R}^{7}
- also preserves a 4 -form $\psi=* \phi$

A quick look at G_{2}

- here G_{2} means the compact form in $\mathrm{SO}(7)$
- stabiliser of a 3 -form ϕ on \mathbb{R}^{7}
- also preserves a 4-form $\psi=* \phi$
- standard 3-form:

$$
\phi=e^{123}+e^{1} \wedge\left(e^{45}+e^{67}\right)+e^{2} \wedge\left(e^{46}-e^{57}\right)+e^{3} \wedge\left(-e^{47}-e^{56}\right)
$$

A quick look at G_{2}

- here G_{2} means the compact form in $\mathrm{SO}(7)$
- stabiliser of a 3 -form ϕ on \mathbb{R}^{7}
- also preserves a 4-form $\psi=* \phi$
- standard 3-form:

$$
\phi=e^{123}+e^{1} \wedge\left(e^{45}+e^{67}\right)+e^{2} \wedge\left(e^{46}-e^{57}\right)+e^{3} \wedge\left(-e^{47}-e^{56}\right)
$$

- standard 4-form:

$$
\psi=e^{4567}+e^{23} \wedge\left(e^{45}+e^{67}\right)+e^{31} \wedge\left(e^{46}-e^{57}\right)+e^{12} \wedge\left(-e^{47}-e^{56}\right)
$$

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

there are only four:

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

there are only four:

- \mathbb{R} - real numbers (1-d)

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)

Normed Algebras

An algebra over \mathbb{R} is normed if it has an inner product such that

$$
|x y|=|x||y|
$$

there are only four:

- \mathbb{R} - real numbers (1-d)
- \mathbb{C} - complex numbers (2-d)
- \mathbb{H} - quaternions (4-d)
- \mathbb{O} - octonions (8-d)

G_{2} and the octonions

G_{2} and \mathbb{O} are closely related:

G_{2} and the octonions

G_{2} and \mathbb{O} are closely related:

- $G_{2}=\operatorname{Aut}(\mathbb{O})$

G_{2} and the octonions

G_{2} and \mathbb{O} are closely related:

- $G_{2}=\operatorname{Aut}(\mathbb{O})$
- $\operatorname{Im}(\mathbb{O})$ is the 7-dimensional representation of G_{2}

G_{2} and the octonions

G_{2} and \mathbb{O} are closely related:

- $G_{2}=\operatorname{Aut}(\mathbb{O})$
- $\operatorname{Im}(\mathbb{O})$ is the 7-dimensional representation of G_{2} octonion multiplication gives rise to the cross product

$$
\begin{aligned}
& x: \operatorname{Im}(\mathbb{O}) \otimes \operatorname{Im}(\mathbb{O}) \rightarrow \operatorname{Im}(\mathbb{O}) \\
& x \times y=\operatorname{Im}(x y)
\end{aligned}
$$

G_{2} and the octonions

G_{2} and \mathbb{O} are closely related:

- $G_{2}=\operatorname{Aut}(\mathbb{O})$
- $\operatorname{Im}(\mathbb{O})$ is the 7-dimensional representation of G_{2} octonion multiplication gives rise to the cross product

$$
\begin{aligned}
& x: \operatorname{Im}(\mathbb{O}) \otimes \operatorname{Im}(\mathbb{O}) \rightarrow \operatorname{Im}(\mathbb{O}) \\
& x \times y=\operatorname{Im}(x y)
\end{aligned}
$$

Relation to the 3-form:

$$
\phi(x, y, z)=\langle x \times y, z\rangle
$$

Associative subspaces

A 3-dimensional subspace $\mathcal{A} \subset \operatorname{Im}(\mathbb{O})$ is associative if one of the (equivalent) holds:

Associative subspaces

A 3-dimensional subspace $\mathcal{A} \subset \operatorname{Im}(\mathbb{O})$ is associative if one of the (equivalent) holds:

- \mathcal{A} is closed under the cross product

Associative subspaces

A 3-dimensional subspace $\mathcal{A} \subset \operatorname{Im}(\mathbb{O})$ is associative if one of the (equivalent) holds:

- \mathcal{A} is closed under the cross product
- $\operatorname{Re}(\mathbb{O}) \oplus \mathcal{A} \subset \mathbb{O}$ is a subalgebra
(an associative subalgebra $\simeq \mathbb{H}$)

Associative subspaces

A 3-dimensional subspace $\mathcal{A} \subset \operatorname{Im}(\mathbb{O})$ is associative if one of the (equivalent) holds:

- \mathcal{A} is closed under the cross product
- $\operatorname{Re}(\mathbb{O}) \oplus \mathcal{A} \subset \mathbb{O}$ is a subalgebra
(an associative subalgebra $\simeq \mathbb{H}$)
- \mathcal{A} can be oriented such that $\left.\phi\right|_{\mathcal{A}}=d v o \mathcal{I}_{\mathcal{A}}$
i.e. \mathcal{A} is a calibrated subspace with respect to the calibration ϕ

Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \operatorname{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \operatorname{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative

Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \operatorname{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative
- For $x, y \in \mathcal{C}, x \times y \in \mathcal{C}^{\perp}$

Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \operatorname{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative
- For $x, y \in \mathcal{C}, x \times y \in \mathcal{C}^{\perp}$
- \mathcal{C} is a calibrated subspace with respect to $\psi:\left.\psi\right|_{\mathcal{C}}=\left.d v o\right|_{\mathcal{C}}$

Coassociative subspaces

A 4-dimensional subspace $\mathcal{C} \subset \operatorname{Im}(\mathbb{O})$ is coassociative if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative
- For $x, y \in \mathcal{C}, x \times y \in \mathcal{C}^{\perp}$
- \mathcal{C} is a calibrated subspace with respect to $\psi:\left.\psi\right|_{\mathcal{C}}=\left.d v o\right|_{\mathcal{C}}$
- $\left.\phi\right|_{\mathcal{C}}=0$

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2}

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2} - each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2} - each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$ X has:

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2}

- each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$
X has:
- a cross product $\times: T X \otimes T X \rightarrow T X$

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2}

- each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$
X has:
- a cross product $\times: T X \otimes T X \rightarrow T X$
- a Riemannian metric g

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2}

- each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$
X has:
- a cross product $\times: T X \otimes T X \rightarrow T X$
- a Riemannian metric g
- a 3-form $\phi \in \Omega^{3}(X)$

G_{2}-structures

A G_{2}-structure on a 7-manifold is a reduction of structure of $T X$ to G_{2}

- each tangent space of X has the structure of $\operatorname{Im}(\mathbb{O})$
X has:
- a cross product $\times: T X \otimes T X \rightarrow T X$
- a Riemannian metric g
- a 3 -form $\phi \in \Omega^{3}(X)$
- a 4-form $\psi=* \phi \in \Omega^{4}(X)$

G_{2}-manifolds

A G_{2}-manifold is a Riemannian 7-manifold with holonomy in G_{2}

G_{2}-manifolds

A G_{2}-manifold is a Riemannian 7-manifold with holonomy in G_{2}

- G_{2} is one of the exceptional holonomy groups in Berger's classification

G_{2}-manifolds

A G_{2}-manifold is a Riemannian 7-manifold with holonomy in G_{2}

- G_{2} is one of the exceptional holonomy groups in Berger's classification so a G_{2}-manifold X is a Riemannian 7 -manifold with a G_{2}-structure such that

$$
\nabla \phi=0
$$

G_{2}-manifolds

A G_{2}-manifold is a Riemannian 7-manifold with holonomy in G_{2}

- G_{2} is one of the exceptional holonomy groups in Berger's classification so a G_{2}-manifold X is a Riemannian 7 -manifold with a G_{2}-structure such that

$$
\nabla \phi=0
$$

equivalently: X is a 7 -manifold with a G_{2}-structure such that

$$
\begin{aligned}
d \phi & =0 \\
d \psi & =0
\end{aligned}
$$

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of $T X$

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of $T X$
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of $T X$
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ
similarly define coassociative submanifolds $\mathcal{C} \rightarrow X$

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of $T X$
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ
similarly define coassociative submanifolds $\mathcal{C} \rightarrow X$
- \mathcal{C} is a calibrated submanifold wrt ψ

Associative / Coassociative submanifolds

A 3-submanifold $\mathcal{A} \rightarrow X$ is an associative submanifold if:

- the tangent spaces of \mathcal{A} are associative subspaces of $T X$
- equivalently \mathcal{A} is a calibrated submanifold wrt ϕ
similarly define coassociative submanifolds $\mathcal{C} \rightarrow X$
- \mathcal{C} is a calibrated submanifold wrt ψ
- \mathcal{C} is coassociative iff $\left.\phi\right|_{\mathcal{C}}=0$

Contents

(1) Some dualities
(2) G_{2} geometry
(3) Deformations of coassociative submanifolds

(4) Coassociative fibrations

(5) Semi-flat coassociative fibrations

First order deformations

Let $\mathcal{C} \rightarrow X$ be a compact coassciative submanifold

First order deformations

Let $\mathcal{C} \rightarrow X$ be a compact coassciative submanifold then $N \mathcal{C} \simeq \wedge_{+}^{2} T^{*} \mathcal{C}$:

First order deformations

Let $\mathcal{C} \rightarrow X$ be a compact coassciative submanifold then $N \mathcal{C} \simeq \wedge_{+}^{2} T^{*} \mathcal{C}$:

$$
\left.\nu \longmapsto \iota_{\nu} \phi\right|_{\mathcal{C}}
$$

First order deformations

Let $\mathcal{C} \rightarrow X$ be a compact coassciative submanifold then $N \mathcal{C} \simeq \wedge_{+}^{2} T^{*} \mathcal{C}$:

$$
\left.\nu \mapsto \iota_{\nu} \phi\right|_{\mathcal{C}}
$$

given a normal vector field ν, we can deform \mathcal{C} in the direction ν

First order deformations

Let $\mathcal{C} \rightarrow X$ be a compact coassciative submanifold then $N \mathcal{C} \simeq \wedge_{+}^{2} T^{*} \mathcal{C}$:

$$
\left.\nu \mapsto \iota_{\nu} \phi\right|_{\mathcal{C}}
$$

given a normal vector field ν, we can deform \mathcal{C} in the direction ν

Theorem (McLean)

A normal vector field ν represents a first order deformation through coassociative submanifolds iff

$$
\left.\iota_{\nu} \phi\right|_{\mathcal{C}} \text { is closed, }
$$

hence a harmonic self-dual form.

Moduli space of deformations

No obstructions to extending a first order deformation to an actual family

Moduli space of deformations

No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of \mathcal{C} through coassociative submanifolds

Moduli space of deformations

No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of \mathcal{C} through coassociative submanifolds
the tangent space $T_{\mathcal{C}} \mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}_{+}^{2}(\mathcal{C}, \mathbb{R})$

Moduli space of deformations

No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of \mathcal{C} through coassociative submanifolds
the tangent space $T_{\mathcal{C}} \mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}_{+}^{2}(\mathcal{C}, \mathbb{R})$

$$
\operatorname{dim}(\mathcal{M})=b_{+}^{2}(\mathcal{C})
$$

Moduli space of deformations

No obstructions to extending a first order deformation to an actual family
we then have a smooth moduli space \mathcal{M} of deformations of \mathcal{C} through coassociative submanifolds
the tangent space $T_{\mathcal{C}} \mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}_{+}^{2}(\mathcal{C}, \mathbb{R})$

$$
\operatorname{dim}(\mathcal{M})=b_{+}^{2}(\mathcal{C})
$$

notation: for $X \in T_{\mathcal{C}} \mathcal{M}$ let ω_{X} be the corresponding harmonic form

Moduli space metric

Let $X, Y \in T_{\mathcal{C}} \mathcal{M}$

 define a metric $g_{\mathcal{M}}$ on \mathcal{M} :
Moduli space metric

Let $X, Y \in T_{\mathcal{C}} \mathcal{M}$
define a metric $g_{\mathcal{M}}$ on \mathcal{M} :

$$
\begin{aligned}
g_{\mathcal{M}}(X, Y) & =\int_{\mathcal{C}} \omega_{X} \wedge \omega_{Y} \\
& =\left\langle\left[\omega_{X}\right] \smile\left[\omega_{Y}\right],[\mathcal{C}]\right\rangle
\end{aligned}
$$

called the L^{2} moduli space metric

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C} \in \mathcal{M}$

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C} \in \mathcal{M}$
get a (locally defined) $H^{2}(\mathcal{C}, \mathbb{R})$-valued 1-form α :

$$
T \mathcal{M} \ni X \mapsto \alpha(X)=\left[\omega_{X}\right] \in H^{2}(\mathcal{C}, \mathbb{R})
$$

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C} \in \mathcal{M}$
get a (locally defined) $H^{2}(\mathcal{C}, \mathbb{R})$-valued 1-form α :

$$
T \mathcal{M} \ni X \mapsto \alpha(X)=\left[\omega_{X}\right] \in H^{2}(\mathcal{C}, \mathbb{R})
$$

Theorem

α is closed, so (locally) we have a function

$$
u: \mathcal{M} \rightarrow H^{2}(\mathcal{C}, \mathbb{R})
$$

such that $\alpha=d u$:

$$
u_{*}(X)=\alpha(X)=\left[\omega_{X}\right]
$$

Local moduli space structure

Then we have

$$
\begin{aligned}
g_{\mathcal{M}}(X, Y) & =\left\langle\left[\omega_{X}\right] \smile\left[\omega_{Y}\right],[\mathcal{C}]\right\rangle \\
& =\left\langle u_{*}(X) \smile u_{*}(Y),[\mathcal{C}]\right\rangle
\end{aligned}
$$

Local moduli space structure

Then we have

$$
\begin{aligned}
g_{\mathcal{M}}(X, Y) & =\left\langle\left[\omega_{X}\right] \smile\left[\omega_{Y}\right],[\mathcal{C}]\right\rangle \\
& =\left\langle u_{*}(X) \smile u_{*}(Y),[\mathcal{C}]\right\rangle
\end{aligned}
$$

so the moduli space metric is the pull-back under u of the intersection form on $H^{2}(\mathcal{C}, \mathbb{R})$

Local moduli space structure

Then we have

$$
\begin{aligned}
g_{\mathcal{M}}(X, Y) & =\left\langle\left[\omega_{X}\right] \smile\left[\omega_{Y}\right],[\mathcal{C}]\right\rangle \\
& =\left\langle u_{*}(X) \smile u_{*}(Y),[\mathcal{C}]\right\rangle
\end{aligned}
$$

so the moduli space metric is the pull-back under u of the intersection form on $H^{2}(\mathcal{C}, \mathbb{R})$
\mathcal{M} is immersed as a maximal positive definite submanifold of $H^{2}(\mathcal{C}, \mathbb{R})$

Contents

(1) Some dualities
(2) G_{2} geometry
(3) Deformations of coassociative submanifolds

4 Coassociative fibrations

(5) Semi-flat coassociative fibrations

Compact Fibrations

Theorem
 Let X be compact and have holonomy $=G_{2}$

Compact Fibrations

Theorem
Let X be compact and have holonomy $=G_{2}$
then any coassociative fibration $\pi: X \rightarrow B$ must degenerate (i.e. π can't be a submersion everywhere)

Proof (1)

Assume $F \rightarrow X \rightarrow B$ is a non-degenerate fibration

Proof (1)

Assume $F \rightarrow X \rightarrow B$ is a non-degenerate fibration
$\operatorname{Hol}(X)=G_{2} \Rightarrow \pi_{1}(X)$ is finite
suffices to take X simply connected

Proof (1)

Assume $F \rightarrow X \rightarrow B$ is a non-degenerate fibration
$\operatorname{Hol}(X)=G_{2} \Rightarrow \pi_{1}(X)$ is finite suffices to take X simply connected also suffices to take F connected and B simply connected

Proof (1)

Assume $F \rightarrow X \rightarrow B$ is a non-degenerate fibration
$\operatorname{Hol}(X)=G_{2} \Rightarrow \pi_{1}(X)$ is finite
suffices to take X simply connected
also suffices to take F connected and B simply connected
Then B is a homotopy 3 -sphere and F is simply connected

Proof (2)

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$
\begin{aligned}
i^{*}: H^{2}(X, \mathbb{R}) & \rightarrow H^{2}(F, \mathbb{R}) \\
\pi^{*}: H^{3}(B, \mathbb{R}) & \rightarrow H^{3}(X, \mathbb{R})
\end{aligned}
$$

Proof (2)

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$
\begin{aligned}
& i^{*}: H^{2}(X, \mathbb{R}) \rightarrow H^{2}(F, \mathbb{R}) \\
& \pi^{*}: H^{3}(B, \mathbb{R}) \rightarrow H^{3}(X, \mathbb{R}) \\
& {[\phi]=c \pi^{*}\left(\left[d v o I_{B}\right]\right), \quad c \neq 0, \quad \int_{B} d v o I_{B}=1 }
\end{aligned}
$$

Proof (2)

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$
\begin{aligned}
& i^{*}: H^{2}(X, \mathbb{R}) \rightarrow H^{2}(F, \mathbb{R}) \\
& \pi^{*}: H^{3}(B, \mathbb{R}) \rightarrow H^{3}(X, \mathbb{R}) \\
& {[\phi]=c \pi^{*}\left(\left[d v o I_{B}\right]\right), \quad c \neq 0, \quad \int_{B} d v o I_{B}=1 }
\end{aligned}
$$

then for a closed 4-form μ on X

$$
\int_{X} \mu \wedge \phi=c \int_{F} i^{*} \mu
$$

Proof (3)

Recall: for a G_{2}-manifold (with $b^{1}(X)=0$) the pairing $H^{2}(X, \mathbb{R}) \otimes H^{2}(X, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
\int_{X} \alpha \wedge \beta \wedge \phi
$$

is negative definite

Proof (3)

Recall: for a G_{2}-manifold (with $b^{1}(X)=0$) the pairing $H^{2}(X, \mathbb{R}) \otimes H^{2}(X, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
\int_{X} \alpha \wedge \beta \wedge \phi
$$

is negative definite
hence the intersection form on F is negative definite

Proof (3)

Recall: for a G_{2}-manifold (with $b^{1}(X)=0$) the pairing $H^{2}(X, \mathbb{R}) \otimes H^{2}(X, \mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
\int_{X} \alpha \wedge \beta \wedge \phi
$$

is negative definite
hence the intersection form on F is negative definite
(Donaldson): intersection form on F is diagonal (i.e. of form $\operatorname{diag}(-1,-1, \ldots,-1)$)

Proof (4)

Now X is spin and $N F$ is trivial

Proof (4)

Now X is spin and $N F$ is trivial $\Rightarrow F$ is spin

Proof (4)

Now X is spin and $N F$ is trivial $\Rightarrow F$ is spin \Rightarrow intersection form is even

Proof (4)

Now X is spin and NF is trivial $\Rightarrow F$ is spin \Rightarrow intersection form is even $\Rightarrow b^{2}(F)=0$

Proof (4)

Now X is spin and $N F$ is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even $\Rightarrow b^{2}(F)=0$
also recall for a G_{2}-manifold (again with $b^{1}(X)=0$)

$$
\int_{X} p_{1}(X) \wedge \phi<0
$$

Proof (4)

Now X is spin and $N F$ is trivial $\Rightarrow F$ is spin
\Rightarrow intersection form is even $\Rightarrow b^{2}(F)=0$
also recall for a G_{2}-manifold (again with $b^{1}(X)=0$)

$$
\int_{X} p_{1}(X) \wedge \phi<0
$$

but this is

$$
c \int_{F} i^{*} p_{1}(X)=c \int_{F} p_{1}(F)=0
$$

by Hirzebruch signature theorem \Rightarrow contradiction

Singularities

What do the singularities look like?

Singularities

What do the singularities look like?
as an example of what to expect we construct compact coassociative fibrations of G_{2}-structures with torsion $(d \phi \neq 0)$

Singularities

What do the singularities look like?
as an example of what to expect we construct compact coassociative fibrations of G_{2}-structures with torsion $(d \phi \neq 0)$
one would hope that metric could be adjusted to produce genuine G_{2}-manifolds

Construction (1)

Take a holomorphic symplectic fibration $\pi: M \rightarrow \mathbb{C P}^{2}$ of a Hyperkähler 8 -manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)

Construction (1)

Take a holomorphic symplectic fibration $\pi: M \rightarrow \mathbb{C P}^{2}$ of a Hyperkähler 8 -manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)
the fibration degenerates over a curve $\Delta \subset \mathbb{C P}^{2}$

Construction (1)

Take a holomorphic symplectic fibration $\pi: M \rightarrow \mathbb{C P}^{2}$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)
the fibration degenerates over a curve $\Delta \subset \mathbb{C P}^{2}$
then M is also a $\operatorname{Spin}(7)$-manifold with 4-form

$$
\Phi=\frac{1}{2} \omega_{l}^{2}+\frac{1}{2} \omega_{J}^{2}-\frac{1}{2} \omega_{K}^{2}
$$

Construction (1)

Take a holomorphic symplectic fibration $\pi: M \rightarrow \mathbb{C P}^{2}$ of a Hyperkähler 8 -manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)
the fibration degenerates over a curve $\Delta \subset \mathbb{C P}^{2}$
then M is also a $\operatorname{Spin}(7)$-manifold with 4-form

$$
\Phi=\frac{1}{2} \omega_{l}^{2}+\frac{1}{2} \omega_{J}^{2}-\frac{1}{2} \omega_{K}^{2}
$$

and $\pi: M \rightarrow \mathbb{C P}^{2}$ is a fibration by Cayley 4-folds

Construction (2)

Now take $S^{3} \subset \mathbb{C P}^{2}$ that encloses a singularity of the curve

Construction (2)

Now take $S^{3} \subset \mathbb{C P}^{2}$ that encloses a singularity of the curve then $S^{3} \cap \Delta$ is a smooth link

Construction (2)

Now take $S^{3} \subset \mathbb{C P}^{2}$ that encloses a singularity of the curve then $S^{3} \cap \Delta$ is a smooth link
e.g. around a singularity $x^{3}+y^{2}=0$ get a trefoil knot

Construction (2)

Now take $S^{3} \subset \mathbb{C P}^{2}$ that encloses a singularity of the curve then $S^{3} \cap \Delta$ is a smooth link
e.g. around a singularity $x^{3}+y^{2}=0$ get a trefoil knot
$\pi^{-1}\left(S^{3}\right)$ is an almost G_{2}-manifold $(d \phi \neq 0, d \psi=0)$ with coassociative fibration degenerating over $S^{3} \cap \Delta$

Construction (2)

Now take $S^{3} \subset \mathbb{C P}^{2}$ that encloses a singularity of the curve
then $S^{3} \cap \Delta$ is a smooth link
e.g. around a singularity $x^{3}+y^{2}=0$ get a trefoil knot
$\pi^{-1}\left(S^{3}\right)$ is an almost G_{2}-manifold $(d \phi \neq 0, d \psi=0)$ with coassociative fibration degenerating over $S^{3} \cap \Delta$
ψ closed \Longrightarrow the fibres are minimal submanifolds, could we flow to a fibration of a G_{2}-manifold?

Riemannian submersion case

Theorem
 Let $\pi: X \rightarrow B$ be a coassociative fibration with compact fibres

Riemannian submersion case

Theorem

Let $\pi: X \rightarrow B$ be a coassociative fibration with compact fibres
B can be given a metric g_{B} such that $\pi: X \rightarrow B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T^{4} or K3)

Riemannian submersion case

Theorem

Let $\pi: X \rightarrow B$ be a coassociative fibration with compact fibres
B can be given a metric g_{B} such that $\pi: X \rightarrow B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T^{4} or K3) in this case B is the moduli space of deformations and

$$
g_{B}=\frac{1}{2 \operatorname{vol}(F)} g_{L^{2}}
$$

Proof

Let $F=\pi^{-1}(b)$ be the fibre over $b \in B$

Proof

Let $F=\pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_{1}, e_{2}, e_{3} for $T_{b} B$, let \tilde{e}_{i} be the horizontal lifts

Proof

Let $F=\pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_{1}, e_{2}, e_{3} for $T_{b} B$, let \tilde{e}_{i} be the horizontal lifts let $\omega_{i}=\left.\iota_{\tilde{e}_{i}} \phi\right|_{F}$ be the corresponding harmonic forms, then

$$
\omega_{i} \wedge \omega_{j}=2 g\left(\tilde{e}_{i}, \tilde{e}_{j}\right) d v o l_{F}
$$

Proof

Let $F=\pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_{1}, e_{2}, e_{3} for $T_{b} B$, let \tilde{e}_{i} be the horizontal lifts let $\omega_{i}=\left.\iota_{\tilde{e}_{i}} \phi\right|_{F}$ be the corresponding harmonic forms, then

$$
\omega_{i} \wedge \omega_{j}=2 g\left(\tilde{e}_{i}, \tilde{e}_{j}\right) d v o l_{F}
$$

follows that we can find Hyperkähler forms iff π is a Riemannian submersion

Contents

(1) Some dualities
(2) G_{2} geometry
(3) Deformations of coassociative submanifolds
(4) Coassociative fibrations
(5) Semi-flat coassociative fibrations

Definition

Definition

A coassociative fibration $\pi: X \rightarrow B$ is semi-flat if

Definition

Definition

A coassociative fibration $\pi: X \rightarrow B$ is semi-flat if

- there is a T^{4}-action of isomorphisms such that the orbits are the fibres of π

Definition

Definition

A coassociative fibration $\pi: X \rightarrow B$ is semi-flat if

- there is a T^{4}-action of isomorphisms such that the orbits are the fibres of π
π is a Riemannian submersion and B is the moduli space of deformations

Definition

Definition

A coassociative fibration $\pi: X \rightarrow B$ is semi-flat if

- there is a T^{4}-action of isomorphisms such that the orbits are the fibres of π
π is a Riemannian submersion and B is the moduli space of deformations (locally) we have the moduli space map

$$
u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right) \simeq \mathbb{R}^{3,3}
$$

Local form (1)

Semi-flat fibrations are locally constructed from the following data:

Local form (1)

Semi-flat fibrations are locally constructed from the following data:

- an oriented 3-manifold B

Local form (1)

Semi-flat fibrations are locally constructed from the following data:

- an oriented 3-manifold B
- $u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right) \simeq \mathbb{R}^{3,3}$ that maps $T B$ to positive definite subspaces

Local form (1)

Semi-flat fibrations are locally constructed from the following data:

- an oriented 3-manifold B
- $u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right) \simeq \mathbb{R}^{3,3}$ that maps $T B$ to positive definite subspaces
- τ a positive constant (representing the fibre volume)

Local form (2)

Give B the metric

$$
g_{B}=\frac{1}{2 \tau} u^{*}\left(g_{3,3}\right)
$$

Local form (2)

Give B the metric

$$
g_{B}=\frac{1}{2 \tau} u^{*}\left(g_{3,3}\right)
$$

define a 3-form ϕ on $B \times \mathbb{R}^{4} / \mathbb{Z}^{4}$

Local form (2)

Give B the metric

$$
g_{B}=\frac{1}{2 \tau} u^{*}\left(g_{3,3}\right)
$$

define a 3-form ϕ on $B \times \mathbb{R}^{4} / \mathbb{Z}^{4}$

$$
\phi=d v o I_{B}+d u
$$

where $u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right)$ is thought of as a 2 -form

$$
u(b)=u_{i j}(b) d x^{i j}
$$

Local form (3)

- ϕ is closed

Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form

Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form

Theorem

$d \psi=0$ iff u is a harmonic map
i.e. $u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right)$ is a minimal immersion

Local form (3)

- ϕ is closed
- ϕ has the correct algebraic form

Theorem
 $d \psi=0$ iff u is a harmonic map
 i.e. $u: B \rightarrow H^{2}\left(T^{4}, \mathbb{R}\right)$ is a minimal immersion
 all semi-flat fibrations have this form locally

Surface reduction

Suppose that $u: B \rightarrow \mathbb{R}^{3,3}$ is conical:

$$
\begin{aligned}
B & =(0, \infty) \times \Sigma \\
g_{B} & =d r^{2}+r^{2} g_{\Sigma}
\end{aligned}
$$

Surface reduction

Suppose that $u: B \rightarrow \mathbb{R}^{3,3}$ is conical:

$$
\begin{aligned}
B & =(0, \infty) \times \Sigma \\
g_{B} & =d r^{2}+r^{2} g_{\Sigma}
\end{aligned}
$$

this corresponds to a (positive definite) minimal surface in the quadric

$$
Q=\left\{x \in \mathbb{R}^{3,3} \mid\langle x, x\rangle=1\right\}
$$

Affine Toda equations

A particular class of minimal surfaces into Q correspond to the equations:

Affine Toda equations

A particular class of minimal surfaces into Q correspond to the equations:

$$
\begin{aligned}
& u_{z \bar{z}}=-e^{v-u}-e^{u} \\
& v_{z \bar{z}}=q \bar{q} e^{-v}+e^{v-u} .
\end{aligned}
$$

where q is a holomorphic cubic differential

- this is a set of affine Toda equations

THANK YOU

