Moduli of special Lagrangian and coassociative submanifolds

David Baraglia

The Australian National University Canberra, Australia

July 19, 2010

Moduli of coassociative submanifolds and semi-flat G₂-manifolds arXiv:0902.2135v2

Some dualities

- 2 G₂ geometry
- 3 Deformations of coassociative submanifolds
- 4 Coassociative fibrations
- 5 Semi-flat coassociative fibrations

5 string theories and M-theory linked by dualities

- 5 string theories and M-theory linked by dualities
 - type IIA IIB duality leads to Mirror symmetry between Calabi-Yau manifolds $X \iff Y$

- 5 string theories and M-theory linked by dualities
 - type IIA IIB duality leads to Mirror symmetry between Calabi-Yau manifolds X ⇐⇒ Y

Strominger Yau Zaslow conjecture: X and Y are special Lagrangian fibrations over same base with dual fibres

by 'brane reduction':

by 'brane reduction':

• M-theory K3-fibration \iff Heterotic T^3 -fibration + flux

by 'brane reduction':

- M-theory K3-fibration \iff Heterotic T^3 -fibration + flux
- M-theory T^4 -fibration \iff IIB T^3 -fibration + flux

by 'brane reduction':

- M-theory K3-fibration \iff Heterotic T^3 -fibration + flux
- M-theory T^4 -fibration \iff IIB T^3 -fibration + flux

so we would like to know about coassociative fibrations and the possibility of dual fibrations

by 'brane reduction':

- M-theory K3-fibration \iff Heterotic T^3 -fibration + flux
- M-theory T^4 -fibration \iff IIB T^3 -fibration + flux

so we would like to know about coassociative fibrations and the possibility of dual fibrations

- coassociative \iff coassociative ?
- coassociative \iff special Lagrangian + flux?

Some dualities

2 G₂ geometry

3 Deformations of coassociative submanifolds

4 Coassociative fibrations

5 Semi-flat coassociative fibrations

• here G_2 means the compact form in SO(7)

- here G_2 means the compact form in SO(7)
- stabiliser of a 3-form ϕ on \mathbb{R}^7

- here G_2 means the compact form in SO(7)
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- also preserves a 4-form $\psi = *\phi$

- here G_2 means the compact form in SO(7)
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- $\bullet\,$ also preserves a 4-form $\psi=*\phi$
- standard 3-form:

$$\phi = e^{123} + e^1 \wedge (e^{45} + e^{67}) + e^2 \wedge (e^{46} - e^{57}) + e^3 \wedge (-e^{47} - e^{56})$$

- here G_2 means the compact form in SO(7)
- stabiliser of a 3-form ϕ on \mathbb{R}^7
- also preserves a 4-form $\psi = *\phi$
- standard 3-form:

$$\phi = e^{123} + e^1 \wedge (e^{45} + e^{67}) + e^2 \wedge (e^{46} - e^{57}) + e^3 \wedge (-e^{47} - e^{56})$$

• standard 4-form: $\psi = e^{4567} + e^{23} \wedge (e^{45} + e^{67}) + e^{31} \wedge (e^{46} - e^{57}) + e^{12} \wedge (-e^{47} - e^{56})$

|xy| = |x||y|

$$|xy| = |x||y|$$

$$|xy| = |x||y|$$

there are only four:

• \mathbb{R} - real numbers (1-d)

$$|xy| = |x||y|$$

- \mathbb{R} real numbers (1-d)
- \mathbb{C} complex numbers (2-d)

$$|xy| = |x||y|$$

- \mathbb{R} real numbers (1-d)
- \mathbb{C} complex numbers (2-d)
- \mathbb{H} quaternions (4-d)

$$|xy| = |x||y|$$

- \mathbb{R} real numbers (1-d)
- \mathbb{C} complex numbers (2-d)
- \mathbb{H} quaternions (4-d)
- \mathbb{O} octonions (8-d)

G_2 and the octonions

 G_2 and \mathbb{O} are closely related:

G_2 and the octonions

 G_2 and \mathbb{O} are closely related:

• $G_2 = \operatorname{Aut}(\mathbb{O})$

G_2 and the octonions

 G_2 and \mathbb{O} are closely related:

- $G_2 = \operatorname{Aut}(\mathbb{O})$
- $\operatorname{Im}(\mathbb{O})$ is the 7-dimensional representation of G_2

 G_2 and \mathbb{O} are closely related:

- $G_2 = \operatorname{Aut}(\mathbb{O})$
- $\bullet~\mathrm{Im}(\mathbb{O})$ is the 7-dimensional representation of ${\it G}_2$

octonion multiplication gives rise to the cross product

 $\begin{array}{l} \times : \operatorname{Im}(\mathbb{O}) \otimes \operatorname{Im}(\mathbb{O}) \to \operatorname{Im}(\mathbb{O}) \\ x \times y = \operatorname{Im}(xy) \end{array}$

 G_2 and \mathbb{O} are closely related:

- $G_2 = \operatorname{Aut}(\mathbb{O})$
- $\bullet~\mathrm{Im}(\mathbb{O})$ is the 7-dimensional representation of ${\it G}_2$

octonion multiplication gives rise to the cross product

$$\begin{array}{l} \times : \operatorname{Im}(\mathbb{O}) \otimes \operatorname{Im}(\mathbb{O}) \to \operatorname{Im}(\mathbb{O}) \\ x \times y = \operatorname{Im}(xy) \end{array}$$

Relation to the 3-form:

$$\phi(x, y, z) = \langle x \times y, z \rangle$$

A 3-dimensional subspace $\mathcal{A} \subset Im(\mathbb{O})$ is *associative* if one of the (equivalent) holds:

- A 3-dimensional subspace $\mathcal{A} \subset Im(\mathbb{O})$ is *associative* if one of the (equivalent) holds:
 - \mathcal{A} is closed under the cross product

- A 3-dimensional subspace $\mathcal{A} \subset Im(\mathbb{O})$ is *associative* if one of the (equivalent) holds:
 - $\bullet~\mathcal{A}$ is closed under the cross product
 - Re(O) ⊕ A ⊂ O is a subalgebra (an associative subalgebra ≃ H)

- A 3-dimensional subspace $\mathcal{A} \subset Im(\mathbb{O})$ is *associative* if one of the (equivalent) holds:
 - $\bullet~\mathcal{A}$ is closed under the cross product
 - Re(O) ⊕ A ⊂ O is a subalgebra (an associative subalgebra ≃ H)
 - A can be oriented such that φ|_A = dvol_A
 i.e. A is a calibrated subspace with respect to the calibration φ

A 4-dimensional subspace $C \subset Im(\mathbb{O})$ is *coassociative* if one of the (equivalent) holds:

A 4-dimensional subspace $\mathcal{C} \subset Im(\mathbb{O})$ is *coassociative* if one of the (equivalent) holds:

 $\bullet \ \mathcal{C}^{\perp}$ is associative

A 4-dimensional subspace $C \subset Im(\mathbb{O})$ is *coassociative* if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative
- For $x, y \in \mathcal{C}$, $x \times y \in \mathcal{C}^{\perp}$

A 4-dimensional subspace $C \subset Im(\mathbb{O})$ is *coassociative* if one of the (equivalent) holds:

- \mathcal{C}^{\perp} is associative
- For $x, y \in \mathcal{C}$, $x \times y \in \mathcal{C}^{\perp}$
- ${\mathcal C}$ is a calibrated subspace with respect to $\psi{:}~\psi|_{\mathcal C}={\it dvol}_{\mathcal C}$

A 4-dimensional subspace $C \subset Im(\mathbb{O})$ is *coassociative* if one of the (equivalent) holds:

- $\bullet \ \mathcal{C}^{\perp}$ is associative
- For $x, y \in \mathcal{C}$, $x \times y \in \mathcal{C}^{\perp}$
- ${\mathcal C}$ is a calibrated subspace with respect to $\psi{:}~\psi|_{\mathcal C}={\it dvol}_{\mathcal C}$
- $\phi|_{\mathcal{C}} = 0$

A G_2 -structure on a 7-manifold is a reduction of structure of TX to G_2

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(O)

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(O)
X has:

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(O)
X has:

• a cross product \times : $TX \otimes TX \rightarrow TX$

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(𝔅)
X has:

- a cross product \times : $TX \otimes TX \rightarrow TX$
- a Riemannian metric g

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(𝔅)
X has:

- a cross product \times : $TX \otimes TX \rightarrow TX$
- a Riemannian metric g
- a 3-form $\phi \in \Omega^3(X)$

A G₂-structure on a 7-manifold is a reduction of structure of TX to G₂
each tangent space of X has the structure of Im(𝔅)
X has:

- a cross product \times : $TX \otimes TX \rightarrow TX$
- a Riemannian metric g
- a 3-form $\phi \in \Omega^3(X)$
- a 4-form $\psi = *\phi \in \Omega^4(X)$

A G_2 -manifold is a Riemannian 7-manifold with holonomy in G_2

- A G_2 -manifold is a Riemannian 7-manifold with holonomy in G_2
 - G_2 is one of the exceptional holonomy groups in Berger's classification

A G_2 -manifold is a Riemannian 7-manifold with holonomy in G_2

• G_2 is one of the exceptional holonomy groups in Berger's classification so a G_2 -manifold X is a Riemannian 7-manifold with a G_2 -structure such that

$$\nabla \phi = \mathbf{0}$$

A G_2 -manifold is a Riemannian 7-manifold with holonomy in G_2

• G_2 is one of the exceptional holonomy groups in Berger's classification so a G_2 -manifold X is a Riemannian 7-manifold with a G_2 -structure such that

$$abla \phi = 0$$

equivalently: X is a 7-manifold with a G_2 -structure such that

$$d\phi = 0$$

 $d\psi = 0$

A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:

- A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
 - the tangent spaces of \mathcal{A} are associative subspaces of $\mathcal{T}X$

- A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
 - the tangent spaces of \mathcal{A} are associative subspaces of $\mathcal{T}X$
 - \bullet equivalently ${\cal A}$ is a calibrated submanifold wrt ϕ

- A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
 - the tangent spaces of \mathcal{A} are associative subspaces of $\mathcal{T}X$
 - ullet equivalently ${\cal A}$ is a calibrated submanifold wrt ϕ

similarly define coassociative submanifolds $\mathcal{C} o X$

- A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
 - the tangent spaces of \mathcal{A} are associative subspaces of $\mathcal{T}X$
 - ullet equivalently ${\cal A}$ is a calibrated submanifold wrt ϕ

similarly define coassociative submanifolds $\mathcal{C} \to X$

• ${\cal C}$ is a calibrated submanifold wrt ψ

- A 3-submanifold $\mathcal{A} \to X$ is an associative submanifold if:
 - the tangent spaces of $\mathcal A$ are associative subspaces of $\mathcal TX$
 - ullet equivalently ${\cal A}$ is a calibrated submanifold wrt ϕ

similarly define coassociative submanifolds $\mathcal{C} o X$

- $\bullet \ \mathcal{C}$ is a calibrated submanifold wrt ψ
- ${\mathcal C}$ is coassociative iff $\phi|_{{\mathcal C}}=0$

Some dualities

2 G₂ geometry

3 Deformations of coassociative submanifolds

- 4 Coassociative fibrations
- 5 Semi-flat coassociative fibrations

Let $\mathcal{C} \to X$ be a *compact* coassciative submanifold

Let $\mathcal{C} \to X$ be a *compact* coassciative submanifold then $N\mathcal{C} \simeq \wedge^2_+ T^*\mathcal{C}$: Let $\mathcal{C} \to X$ be a *compact* coassciative submanifold then $\mathcal{NC} \simeq \wedge^2_+ T^*\mathcal{C}$:

 $\nu \mapsto \iota_{\nu} \phi |_{\mathcal{C}}$

Let $\mathcal{C} \to X$ be a *compact* coassciative submanifold then $N\mathcal{C} \simeq \wedge^2_+ T^*\mathcal{C}$:

 $\nu \mapsto \iota_{\nu} \phi |_{\mathcal{C}}$

given a normal vector field u, we can deform $\mathcal C$ in the direction u

Let $\mathcal{C} \to X$ be a *compact* coassciative submanifold then $N\mathcal{C} \simeq \wedge^2_+ T^*\mathcal{C}$:

 $\nu \mapsto \iota_{\nu} \phi |_{\mathcal{C}}$

given a normal vector field $\nu,$ we can deform ${\cal C}$ in the direction ν

Theorem (McLean)

A normal vector field ν represents a first order deformation through coassociative submanifolds iff

 $\iota_{
u}\phi|_{\mathcal{C}}$ is closed,

hence a harmonic self-dual form.

we then have a smooth moduli space ${\mathcal M}$ of deformations of ${\mathcal C}$ through coassociative submanifolds

we then have a smooth moduli space ${\mathcal M}$ of deformations of ${\mathcal C}$ through coassociative submanifolds

the tangent space $T_{\mathcal{C}}\mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}^2_+(\mathcal{C},\mathbb{R})$

we then have a smooth moduli space ${\cal M}$ of deformations of ${\cal C}$ through coassociative submanifolds

the tangent space $T_{\mathcal{C}}\mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}^2_+(\mathcal{C},\mathbb{R})$

$$\dim(\mathcal{M}) = b_+^2(\mathcal{C})$$

we then have a smooth moduli space ${\mathcal M}$ of deformations of ${\mathcal C}$ through coassociative submanifolds

the tangent space $T_{\mathcal{C}}\mathcal{M}$ of \mathcal{M} at \mathcal{C} is naturally isomorphic to $\mathcal{H}^2_+(\mathcal{C},\mathbb{R})$

$$\dim(\mathcal{M}) = b_+^2(\mathcal{C})$$

notation: for $X \in T_{\mathcal{C}}\mathcal{M}$ let ω_X be the corresponding harmonic form

Let $X, Y \in T_{\mathcal{C}}\mathcal{M}$

define a metric $g_{\mathcal{M}}$ on \mathcal{M} :

Let $X, Y \in T_{\mathcal{C}}\mathcal{M}$

define a metric $g_{\mathcal{M}}$ on \mathcal{M} :

$$egin{aligned} g_{\mathcal{M}}(X,Y) &= \int_{\mathcal{C}} \omega_X \wedge \omega_Y \ &= \langle [\omega_X] \smile [\omega_Y], [\mathcal{C}]
angle \end{aligned}$$

called the L^2 moduli space metric

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C}\in\mathcal{M}$

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C}\in\mathcal{M}$

get a (locally defined) $H^2(\mathcal{C},\mathbb{R})$ -valued 1-form α :

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\omega_X] \in H^2(\mathcal{C}, \mathbb{R})$$

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $\mathcal{C}\in\mathcal{M}$

get a (locally defined) $H^2(\mathcal{C}, \mathbb{R})$ -valued 1-form α :

$$\mathcal{TM}
i X \mapsto lpha(X) = [\omega_X] \in H^2(\mathcal{C}, \mathbb{R})$$

Theorem

lpha is closed, so (locally) we have a function

$$u: \mathcal{M} \to H^2(\mathcal{C}, \mathbb{R})$$

such that $\alpha = du$:

$$u_*(X) = \alpha(X) = [\omega_X]$$

Then we have

$$egin{aligned} \mathsf{g}_\mathcal{M}(X,Y) &= \langle [\omega_X] \smile [\omega_Y], [\mathcal{C}]
angle \ &= \langle u_*(X) \smile u_*(Y), [\mathcal{C}]
angle \end{aligned}$$

Then we have

$$g_{\mathcal{M}}(X,Y) = \langle [\omega_X] \smile [\omega_Y], [\mathcal{C}] \rangle$$
$$= \langle u_*(X) \smile u_*(Y), [\mathcal{C}] \rangle$$

so the moduli space metric is the pull-back under u of the intersection form on $H^2(\mathcal{C},\mathbb{R})$

Then we have

$$g_{\mathcal{M}}(X,Y) = \langle [\omega_X] \smile [\omega_Y], [\mathcal{C}] \rangle$$
$$= \langle u_*(X) \smile u_*(Y), [\mathcal{C}] \rangle$$

so the moduli space metric is the pull-back under u of the intersection form on $H^2(\mathcal{C},\mathbb{R})$

 \mathcal{M} is immersed as a maximal positive definite submanifold of $H^2(\mathcal{C},\mathbb{R})$

Some dualities

- 2 G₂ geometry
- 3 Deformations of coassociative submanifolds
- 4 Coassociative fibrations
- 5 Semi-flat coassociative fibrations

Let X be compact and have holonomy = G_2

Let X be compact and have holonomy = G_2

then any coassociative fibration $\pi: X \rightarrow B$ must degenerate

(i.e. π can't be a submersion everywhere)

Assume $F \rightarrow X \rightarrow B$ is a non-degenerate fibration

Assume $F \to X \to B$ is a non-degenerate fibration Hol(X) = $G_2 \Rightarrow \pi_1(X)$ is finite suffices to take X simply connected Assume $F \to X \to B$ is a non-degenerate fibration Hol(X) = $G_2 \Rightarrow \pi_1(X)$ is finite suffices to take X simply connected

also suffices to take F connected and B simply connected

Assume $F \to X \to B$ is a non-degenerate fibration Hol(X) = $G_2 \Rightarrow \pi_1(X)$ is finite suffices to take X simply connected also suffices to take F connected and B simply connected

Then B is a homotopy 3-sphere and F is simply connected

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$i^*: H^2(X, \mathbb{R}) \to H^2(F, \mathbb{R})$$

 $\pi^*: H^3(B, \mathbb{R}) \to H^3(X, \mathbb{R})$

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$egin{aligned} &i^*: H^2(X,\mathbb{R}) o H^2(F,\mathbb{R}) \ &\pi^*: H^3(B,\mathbb{R}) o H^3(X,\mathbb{R}) \end{aligned}$$
 $&[\phi] = c\pi^*([dvol_B]), \ \ c
eq 0, \ \ \int_B dvol_B = egin{aligned} &igned content \\ &igned content \end{aligned}$

1

Leray-Serre spectral sequence \Rightarrow isomorphisms

$$egin{aligned} &i^*: H^2(X,\mathbb{R}) o H^2(F,\mathbb{R}) \ &\pi^*: H^3(B,\mathbb{R}) o H^3(X,\mathbb{R}) \end{aligned}$$
 $&[\phi] = c\pi^*([dvol_B]), \ \ c
eq 0, \ \ \int_B dvol_B = 1 \end{aligned}$

then for a closed 4-form μ on X

$$\int_X \mu \wedge \phi = c \int_F i^* \mu$$

Recall: for a G_2 -manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by $\int_X \alpha \wedge \beta \wedge \phi$

is negative definite

Recall: for a G_2 -manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by $\int_X \alpha \wedge \beta \wedge \phi$

is negative definite

hence the intersection form on F is negative definite

Recall: for a G_2 -manifold (with $b^1(X) = 0$) the pairing $H^2(X, \mathbb{R}) \otimes H^2(X, \mathbb{R}) \to \mathbb{R}$ given by

$$\int_{\boldsymbol{X}} \alpha \wedge \beta \wedge \phi$$

is negative definite

hence the intersection form on F is negative definite

(Donaldson): intersection form on F is diagonal (i.e. of form $diag(-1, -1, \dots, -1)$)

Now X is spin and NF is trivial

Now X is spin and NF is trivial \Rightarrow F is spin

Now X is spin and NF is trivial \Rightarrow F is spin \Rightarrow intersection form is even Now X is spin and NF is trivial \Rightarrow F is spin \Rightarrow intersection form is even \Rightarrow $b^2(F) = 0$ Now X is spin and NF is trivial \Rightarrow F is spin \Rightarrow intersection form is even \Rightarrow $b^2(F) = 0$

also recall for a G_2 -manifold (again with $b^1(X) = 0$)

$$\int_X p_1(X) \wedge \phi < 0$$

Now X is spin and NF is trivial \Rightarrow F is spin \Rightarrow intersection form is even \Rightarrow $b^2(F) = 0$

also recall for a G_2 -manifold (again with $b^1(X) = 0$)

$$\int_X p_1(X) \wedge \phi < 0$$

but this is

$$c\int_F i^*p_1(X)=c\int_F p_1(F)=0$$

by Hirzebruch signature theorem \Rightarrow contradiction

What do the singularities look like?

What do the singularities look like?

as an example of what to expect we construct compact coassociative fibrations of G_2 -structures with torsion $(d\phi \neq 0)$

What do the singularities look like?

as an example of what to expect we construct compact coassociative fibrations of G_2 -structures with torsion $(d\phi \neq 0)$

one would hope that metric could be adjusted to produce genuine G_2 -manifolds

Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)

Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration) the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$ Take a holomorphic symplectic fibration $\pi: M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)

the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$

then M is also a Spin(7)-manifold with 4-form

$$\Phi = \frac{1}{2}\omega_I^2 + \frac{1}{2}\omega_J^2 - \frac{1}{2}\omega_K^2$$

Take a holomorphic symplectic fibration $\pi : M \to \mathbb{CP}^2$ of a Hyperkähler 8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)

the fibration degenerates over a curve $\Delta \subset \mathbb{CP}^2$

then M is also a Spin(7)-manifold with 4-form

$$\Phi = \frac{1}{2}\omega_I^2 + \frac{1}{2}\omega_J^2 - \frac{1}{2}\omega_K^2$$

and $\pi: \mathcal{M} \to \mathbb{CP}^2$ is a fibration by Cayley 4-folds

then $S^3 \cap \Delta$ is a smooth link

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot

 $\pi^{-1}(S^3)$ is an almost G_2 -manifold $(d\phi \neq 0, d\psi = 0)$ with coassociative fibration degenerating over $S^3 \cap \Delta$

then $S^3 \cap \Delta$ is a smooth link

e.g. around a singularity $x^3 + y^2 = 0$ get a trefoil knot

 $\pi^{-1}(S^3)$ is an almost G_2 -manifold $(d\phi \neq 0, d\psi = 0)$ with coassociative fibration degenerating over $S^3 \cap \Delta$

 ψ closed \implies the fibres are minimal submanifolds, could we flow to a fibration of a G_2 -manifold?

Let $\pi: X \to B$ be a coassociative fibration with compact fibres

Let $\pi: X \to B$ be a coassociative fibration with compact fibres

B can be given a metric g_B such that $\pi : X \to B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T⁴ or K3)

Let $\pi: X \to B$ be a coassociative fibration with compact fibres

B can be given a metric g_B such that $\pi : X \to B$ is a Riemannian submersion iff the fibres are Hyperkähler (so either T⁴ or K3)

in this case B is the moduli space of deformations and

$$g_B = \frac{1}{2\mathrm{vol}(F)}g_{L^2}$$

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_1, e_2, e_3 for T_bB , let \tilde{e}_i be the horizontal lifts

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_1, e_2, e_3 for $T_b B$, let \tilde{e}_i be the horizontal lifts let $\omega_i = \iota_{\tilde{e}_i} \phi|_F$ be the corresponding harmonic forms, then

$$\omega_i \wedge \omega_j = 2g(\tilde{e}_i, \tilde{e}_j) dvol_F$$

Let $F = \pi^{-1}(b)$ be the fibre over $b \in B$ pick a basis e_1, e_2, e_3 for $T_b B$, let \tilde{e}_i be the horizontal lifts let $\omega_i = \iota_{\tilde{e}_i} \phi|_F$ be the corresponding harmonic forms, then

$$\omega_i \wedge \omega_j = 2g(\tilde{e}_i, \tilde{e}_j) dvol_F$$

follows that we can find Hyperkähler forms iff π is a Riemannian submersion

Some dualities

- 2 G₂ geometry
- 3 Deformations of coassociative submanifolds
- 4 Coassociative fibrations
- 5 Semi-flat coassociative fibrations

A coassociative fibration $\pi: X \to B$ is *semi-flat* if

A coassociative fibration $\pi: X \to B$ is *semi-flat* if

 $\bullet\,$ there is a $T^4\mbox{-}action$ of isomorphisms such that the orbits are the fibres of $\pi\,$

A coassociative fibration $\pi: X \to B$ is *semi-flat* if

- \bullet there is a $T^4\mbox{-}action$ of isomorphisms such that the orbits are the fibres of π
- π is a Riemannian submersion and B is the moduli space of deformations

A coassociative fibration $\pi: X \to B$ is *semi-flat* if

 $\bullet\,$ there is a $T^4\mbox{-}action$ of isomorphisms such that the orbits are the fibres of $\pi\,$

 π is a Riemannian submersion and B is the moduli space of deformations (locally) we have the moduli space map

$$u: B \to H^2(T^4, \mathbb{R}) \simeq \mathbb{R}^{3,3}$$

• an oriented 3-manifold B

- an oriented 3-manifold B
- $u: B \to H^2(T^4, \mathbb{R}) \simeq \mathbb{R}^{3,3}$ that maps TB to positive definite subspaces

- an oriented 3-manifold B
- $u: B \to H^2(T^4, \mathbb{R}) \simeq \mathbb{R}^{3,3}$ that maps TB to positive definite subspaces
- au a positive constant (representing the fibre volume)

Give B the metric

$$g_B = \frac{1}{2\tau} u^*(g_{3,3})$$

Give B the metric

$$g_B=\frac{1}{2\tau}u^*(g_{3,3})$$

define a 3-form ϕ on $B\times \mathbb{R}^4/\mathbb{Z}^4$

Give B the metric

$$g_B = \frac{1}{2\tau} u^*(g_{3,3})$$

define a 3-form ϕ on $B\times \mathbb{R}^4/\mathbb{Z}^4$

$$\phi = dvol_B + du$$

where $u: B \to H^2(T^4, \mathbb{R})$ is thought of as a 2-form

$$u(b) = u_{ij}(b) dx^{ij}$$

 $\bullet \ \phi$ is closed

- $\bullet \ \phi$ is closed
- $\bullet \ \phi$ has the correct algebraic form

- ϕ is closed
- $\bullet~\phi$ has the correct algebraic form

Theorem

 $d\psi = 0$ iff u is a harmonic map i.e. $u : B \to H^2(T^4, \mathbb{R})$ is a minimal immersion

• ϕ is closed

• ϕ has the correct algebraic form

Theorem

 $d\psi = 0$ iff u is a harmonic map i.e. $u : B \to H^2(T^4, \mathbb{R})$ is a minimal immersion

all semi-flat fibrations have this form locally

Suppose that $u: B \to \mathbb{R}^{3,3}$ is conical:

$$B = (0, \infty) \times \Sigma$$
$$g_B = dr^2 + r^2 g_{\Sigma}$$

Suppose that $u: B \to \mathbb{R}^{3,3}$ is conical:

$$B = (0, \infty) \times \Sigma$$
$$g_B = dr^2 + r^2 g_{\Sigma}$$

this corresponds to a (positive definite) minimal surface in the quadric

$$Q = \{x \in \mathbb{R}^{3,3} | \langle x, x \rangle = 1\}$$

A particular class of minimal surfaces into Q correspond to the equations:

A particular class of minimal surfaces into Q correspond to the equations:

$$u_{z\overline{z}} = -e^{v-u} - e^{u},$$

 $v_{z\overline{z}} = q\overline{q}e^{-v} + e^{v-u}.$

where q is a holomorphic cubic differential

• this is a set of affine Toda equations

THANK YOU