Moduli of special Lagrangian and coassociative submanifolds

David Baraglia

The Australian National University Canberra, Australia

July 18, 2010

Contents

Introduction

- 2 Calibrations
- 3 Calabi-Yau manifolds
- 4 Special Lagrangians
- 5 Deformations of compact special Lagrangians
- 6 Special Lagrangian fibrations

• they are minimal submanifolds

- they are minimal submanifolds
- nice moduli space of deformations

- they are minimal submanifolds
- nice moduli space of deformations
- the SYZ conjecture: "mirror symmetry is T-duality" nice geometric picture of mirror symmetry X, \tilde{X} are dual special Lagrangian fibrations over the same base

- they are minimal submanifolds
- nice moduli space of deformations
- the SYZ conjecture: "mirror symmetry is T-duality" nice geometric picture of mirror symmetry X, \tilde{X} are dual special Lagrangian fibrations over the same base
- Dualities in M-theory: SYZ-like conjectures involving coassociative fibrations of *G*₂-manifolds.

Introduction

2 Calibrations

- 3 Calabi-Yau manifolds
- 9 Special Lagrangians
- 5 Deformations of compact special Lagrangians
- 6 Special Lagrangian fibrations

Definition

A compact oriented submanifold $S \rightarrow X$ is called a *minimal submanifold* if it is a stationary point for the volume functional

$$\operatorname{vol}(S) = \int_{S} dvol_{S}$$

Let X be Kähler. Any compact complex submanifold of X is minimal

Let X be Kähler. Any compact complex submanifold of X is minimal

Ex: A non-singular algebraic variety in \mathbb{CP}^n is a minimal submanifold

Let X be Kähler. Any compact complex submanifold of X is minimal

Ex: A non-singular algebraic variety in \mathbb{CP}^n is a minimal submanifold Harvey and Lawson found a generalization of this result using calibrations

Definition

A calibration ϕ on X is a p-form such that

- ϕ is closed: $d\phi = 0$,
- for any $x \in X$ and oriented *p*-dimensional subspace $V \subseteq T_x X$, we have $\phi|_V = \lambda dvol$, where $\lambda \leq 1$ and dvol is the volume form on V with respect to *g*.

Definition

A calibration ϕ on X is a p-form such that

- ϕ is closed: $d\phi = 0$,
- for any $x \in X$ and oriented *p*-dimensional subspace $V \subseteq T_x X$, we have $\phi|_V = \lambda dvol$, where $\lambda \leq 1$ and dvol is the volume form on V with respect to *g*.

Subspaces such that $\lambda = 1$ are called *calibrated subspaces*.

Definition

A calibration ϕ on X is a p-form such that

- ϕ is closed: $d\phi = 0$,
- for any $x \in X$ and oriented *p*-dimensional subspace $V \subseteq T_x X$, we have $\phi|_V = \lambda dvol$, where $\lambda \leq 1$ and dvol is the volume form on V with respect to *g*.

Subspaces such that $\lambda = 1$ are called *calibrated subspaces*. An oriented *p*-submanifold $S \subseteq X$ is a *calibrated submanifold* of X with respect to ϕ if the tangent spaces of S are calibrated subspaces: $\phi|_S = dvol_S$.

Let S be a compact calibrated submanifold. S has minimal volume amongst all submanifolds representing the same homology class.

Let S be a compact calibrated submanifold. S has minimal volume amongst all submanifolds representing the same homology class.

Proof.

Let S' be a compact submanifold with [S] = [S']. Then since ϕ is closed

$$\operatorname{vol}(S) = \int_{S} \phi = \int_{S'} \phi \leq \int_{S'} d\operatorname{vol}_{S'} = \operatorname{vol}(S').$$

Why is this useful?

Why is this useful?

The minimal submanifold equation $f : S \to X$ is second order in f. The calibrated submanifold condition $f^*\phi = dvol_S$ is first order in f.

(X,ω) Kähler, then ω^k is a calibration \implies complex submanifolds

 (X, ω) Kähler, then ω^k is a calibration \implies complex submanifolds Calabi-Yau: special Lagrangians (soon) (X, ω) Kähler, then ω^k is a calibration \implies complex submanifolds Calabi-Yau: special Lagrangians (soon)

 G_2 -manifolds: associative and coassociative submanifolds (next time: coassociative)

- (X,ω) Kähler, then ω^k is a calibration \implies complex submanifolds
- Calabi-Yau: special Lagrangians (soon)
- G_2 -manifolds: associative and coassociative submanifolds (next time: coassociative)
- Spin(7)-manifolds: Cayley submanifolds

 (X,ω) Kähler, then ω^k is a calibration \implies complex submanifolds

Calabi-Yau: special Lagrangians (soon)

 G_2 -manifolds: associative and coassociative submanifolds (next time: coassociative)

Spin(7)-manifolds: Cayley submanifolds

Special Lagrangian and coassociative have a nice deformation theory (unobstructed). Associative and Cayley do not (obstructed). (See: McLean)

Contents

Introduction

2 Calibrations

- 3 Calabi-Yau manifolds
- 4 Special Lagrangians
- 5 Deformations of compact special Lagrangians
- 6 Special Lagrangian fibrations

Definition

A Calabi-Yau manifold is a Riemannian manifold with holonomy in SU(n).

Definition

A Calabi-Yau manifold is a Riemannian manifold with holonomy in SU(n).

On a Kähler manifold X with trivial canonical bundle ($K = \bigwedge^{n,0} T^*X$), every Kähler class admits a unique Calabi-Yau metric.

Reduction of structure to SU(n) can be defined using only

- A non-degenerate 2-form ω
- A complex *n*-form $\Omega = \Omega_1 + i\Omega_2$ which is locally decomposable: $\Omega = \theta_1 \wedge \cdots \wedge \theta_n$

such that:

Reduction of structure to SU(n) can be defined using only

- A non-degenerate 2-form ω
- A complex *n*-form $\Omega = \Omega_1 + i\Omega_2$ which is locally decomposable: $\Omega = \theta_1 \wedge \cdots \wedge \theta_n$

such that:

- $\omega \wedge \Omega = 0$,
- $\Omega \wedge \overline{\Omega} = \omega^n$ or $i\omega^n$,
- $\omega(I, \cdot)$ is positive with respect to the almost complex structure determined by Ω .

The SU(*n*)-structure is torsion free if and only if $d\omega = 0$, $d\Omega = 0$.

The SU(*n*)-structure is torsion free if and only if $d\omega = 0$, $d\Omega = 0$.

In this case there is a torsion free SU(n)-connection ∇ such that $\nabla \omega = 0$, $\nabla \Omega = 0$.

Precisely the requirement for a Calabi-Yau manifold.

Contents

Introduction

2 Calibrations

- 3 Calabi-Yau manifolds
- 4 Special Lagrangians
 - 5 Deformations of compact special Lagrangians
- 6 Special Lagrangian fibrations

The form $\Omega_1 = \operatorname{Re}(\Omega)$ is a calibration.

Definition

A submanifold $L \to X$ of a Calabi-Yau manifold is *special Lagrangian* if it is a calibrated submanifold with respect to Ω_1 .

The form $\Omega_1 = \operatorname{Re}(\Omega)$ is a calibration.

Definition

A submanifold $L \to X$ of a Calabi-Yau manifold is *special Lagrangian* if it is a calibrated submanifold with respect to Ω_1 .

Note: can replace Ω by $e^{-i\theta}\Omega$ and Ω_1 by $\cos(\theta)\Omega_1 + \sin(\theta)\Omega_2$.

Equivalent condition: $\omega|_L = 0$, $\Omega_2|_L = 0$ (hence the "Lagrangian" part of the name)

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways

special Lagrangians are much more rigid - we will see that compact ones have a finite dimensional moduli space of deformations of dimension b^1 .

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways

special Lagrangians are much more rigid - we will see that compact ones have a finite dimensional moduli space of deformations of dimension b^1 .

special Lagrangian tori exist in $b^1(T^n) = n$ dimensional families - just the right number for a torus fibration

Contents

Introduction

2 Calibrations

- 3 Calabi-Yau manifolds
- 4 Special Lagrangians
- 5 Deformations of compact special Lagrangians

6 Special Lagrangian fibrations

Let $L \to X$ be a *compact* special Lagrangian

Let $L \rightarrow X$ be a *compact* special Lagrangian then $NL \simeq T^*L$:

Let $L \to X$ be a *compact* special Lagrangian then $NL \simeq T^*L$:

 $X \mapsto i_X \omega|_L$

Let $L \to X$ be a *compact* special Lagrangian then $NL \simeq T^*L$:

 $X \mapsto i_X \omega|_L$

given a normal vector field X, we can deform L in the direction X

Let $L \to X$ be a *compact* special Lagrangian then $NL \simeq T^*L$:

 $X \mapsto i_X \omega|_L$

given a normal vector field X, we can deform L in the direction X

Theorem (McLean)

A normal vector field X represents a first order deformation through special Lagrangian submanifolds iff

 $i_X \omega|_L$ is a harmonic 1-form on L.

We get a smooth moduli space \mathcal{M} of deformations of L through special Lagrangians

We get a smooth moduli space $\mathcal M$ of deformations of L through special Lagrangians

the tangent space $T_L \mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^1(L,\mathbb{R})$

We get a smooth moduli space $\mathcal M$ of deformations of L through special Lagrangians

the tangent space $T_L \mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^1(L,\mathbb{R})$

 $\dim(\mathcal{M})=b^1(L)$

We get a smooth moduli space $\mathcal M$ of deformations of L through special Lagrangians

the tangent space $T_L \mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^1(L,\mathbb{R})$

$$\dim(\mathcal{M})=b^1(L)$$

notation: for $X \in T_L \mathcal{M}$ let $\theta_X = i_X \omega|_L$ be the corresponding harmonic form

 ${\cal M}$ has a natural metric:

- ${\cal M}$ has a natural metric:
- Let $X, Y \in T_L \mathcal{M}$
- define $g_{\mathcal{M}}$ on \mathcal{M} :

$$g_{\mathcal{M}}(X,Y) = \int_L heta_X \wedge \star heta_Y$$

called the L^2 moduli space metric

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in M$

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in M$

get a (locally defined) $H^1(L, \mathbb{R})$ -valued 1-form α :

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R})$$

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in M$

get a (locally defined) $H^1(L, \mathbb{R})$ -valued 1-form α :

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R})$$

Theorem

lpha is closed, so (locally) we have a function

$$u: \mathcal{M} \to H^1(L, \mathbb{R})$$

such that $\alpha = du$:

$$u_*(X) = \alpha(X) = [\theta_X]$$

Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in M$

get a (locally defined) $H^1(L, \mathbb{R})$ -valued 1-form α :

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R})$$

Theorem

 α is closed, so (locally) we have a function

$$u: \mathcal{M} \to H^1(L, \mathbb{R})$$

such that $\alpha = du$:

$$u_*(X) = \alpha(X) = [\theta_X]$$

These are natural local affine coordinates $u_1, \ldots, u_{b^1(L)}$ on \mathcal{M}

David Baraglia (ANU)

Have an isomorphism: $NL \rightarrow \bigwedge^{n-1} T^*L$: $X \mapsto i_X \Omega_2$

Have an isomorphism: $NL \rightarrow \bigwedge^{n-1} T^*L$: $X \mapsto i_X \Omega_2$

X is a first order deformation if and only if $i_X \Omega_2$ is a harmonic (n-1)-form. In fact $i_X \Omega = \star \theta_X$.

Have an isomorphism: $NL \rightarrow \bigwedge^{n-1} T^*L$: $X \mapsto i_X \Omega_2$

X is a first order deformation if and only if $i_X \Omega_2$ is a harmonic (n-1)-form. In fact $i_X \Omega = \star \theta_X$.

By same reasoning we get local affine coordinates $v : \mathcal{M} \to H^{n-1}(L, \mathbb{R})$.

We have two sets of affine coordinates: $u: \mathcal{M} \to H^1(L, \mathbb{R})$ and $v: \mathcal{M} \to H^{n-1}(L, \mathbb{R})$. We have two sets of affine coordinates: $u: \mathcal{M} \to H^1(L, \mathbb{R})$ and $v: \mathcal{M} \to H^{n-1}(L, \mathbb{R})$.

Combine them: $F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}).$

We have two sets of affine coordinates: $u : \mathcal{M} \to H^1(L, \mathbb{R})$ and $v : \mathcal{M} \to H^{n-1}(L, \mathbb{R})$. Combine them: $F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$. Why do this? We have two sets of affine coordinates: $u : \mathcal{M} \to H^1(L, \mathbb{R})$ and $v : \mathcal{M} \to H^{n-1}(L, \mathbb{R})$. Combine them: $F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$. Why do this?

The space $V = H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$ has an obvious (n, n)-metric \langle , \rangle and symplectic structure w:

$$\langle (a,b), (c,d) \rangle = \frac{1}{2} \int_{L} a \wedge d + b \wedge c$$

 $w((a,b), (c,d)) = \int_{L} a \wedge d - b \wedge c.$

 $F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$ sends \mathcal{M} to a Lagrangian submanifold. Moreover the natural L^2 metric on \mathcal{M} is the induced metric.

 $F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$ sends \mathcal{M} to a Lagrangian submanifold. Moreover the natural L^2 metric on \mathcal{M} is the induced metric.

Let u_1, \ldots, u_m be coords for $H^1(L, \mathbb{R})$, $(m = b^1(L))$. Let v_i, \ldots, v_m be dual coordinates for $H^{n-1}(L, \mathbb{R})$. The (n, n) metric has form $\sum_i du_i dv_i$.

 $F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$ sends \mathcal{M} to a Lagrangian submanifold. Moreover the natural L^2 metric on \mathcal{M} is the induced metric.

Let u_1, \ldots, u_m be coords for $H^1(L, \mathbb{R})$, $(m = b^1(L))$. Let v_i, \ldots, v_m be dual coordinates for $H^{n-1}(L, \mathbb{R})$. The (n, n) metric has form $\sum_i du_i dv_i$.

 \mathcal{M} is a Lagrangian submanifold, so locally there is a function ϕ such that $v_i = \frac{\partial \phi}{\partial u_i}$.

 $F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R})$ sends \mathcal{M} to a Lagrangian submanifold. Moreover the natural L^2 metric on \mathcal{M} is the induced metric.

Let u_1, \ldots, u_m be coords for $H^1(L, \mathbb{R})$, $(m = b^1(L))$. Let v_i, \ldots, v_m be dual coordinates for $H^{n-1}(L, \mathbb{R})$. The (n, n) metric has form $\sum_i du_i dv_i$.

 \mathcal{M} is a Lagrangian submanifold, so locally there is a function ϕ such that $v_i = \frac{\partial \phi}{\partial u_i}$.

Therefore the L^2 -metric looks like

$$g_{\mathcal{M}} = \sum_{i,j} \frac{\partial^2 \phi}{\partial u_i \partial u_j} du_i du_j$$

 ${\mathcal M}$ is a Lagrangian, but is it in some sense "special"?

 ${\mathcal M}$ is a Lagrangian, but is it in some sense "special"?

Let $W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m$ $W_2 = dv_1 \wedge \cdots \wedge dv_m$. ${\mathcal M}$ is a Lagrangian, but is it in some sense "special"?

Let $W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m$ $W_2 = dv_1 \wedge \cdots \wedge dv_m$.

Then some linear combination $c_1W_1 + c_2W_2$ vanishes on \mathcal{M} if and only if ϕ obeys the Monge-Ampère equation:

 $\det(\operatorname{Hess}(\phi)) = \operatorname{const}$

 ${\mathcal M}$ is a Lagrangian, but is it in some sense "special"?

Let $W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m$ $W_2 = dv_1 \wedge \cdots \wedge dv_m$.

Then some linear combination $c_1W_1 + c_2W_2$ vanishes on \mathcal{M} if and only if ϕ obeys the Monge-Ampère equation:

 $\det(\operatorname{Hess}(\phi)) = \operatorname{const}$

However this does not hold for all moduli spaces. More on this soon.

Contents

Introduction

2 Calibrations

- 3 Calabi-Yau manifolds
- 4 Special Lagrangians
- 5 Deformations of compact special Lagrangians
- 6 Special Lagrangian fibrations

Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians.

Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville's theorem on integrable systems).

Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville's theorem on integrable systems).

 $b^1(T^n) = n$, so all possible deformations are fibres of $X \to B$. Neglecting singularities, *B* identifies with the moduli of deformations: $B \simeq \mathcal{M}$

Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville's theorem on integrable systems).

 $b^1(T^n) = n$, so all possible deformations are fibres of $X \to B$. Neglecting singularities, *B* identifies with the moduli of deformations: $B \simeq M$

The corresponding harmonic 1-forms must be pointwise linearly independent (since the normal vector fields are).

Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville's theorem on integrable systems).

 $b^1(T^n) = n$, so all possible deformations are fibres of $X \to B$. Neglecting singularities, *B* identifies with the moduli of deformations: $B \simeq M$

The corresponding harmonic 1-forms must be pointwise linearly independent (since the normal vector fields are).

Conversely:

Theorem (Bryant)

Let g be a metric on T^n such that every non-zero harmonic 1-form is non-vanishing. Then (T^n, g) appears as a fibre in a special Lagrangian fibration. This is a local result: the total space need not be compact or complete. Let ${\mathcal M}$ be the moduli spaces of deformations of ${\it L}.$ Consider the enlarged moduli space

$$\mathcal{M}^{\mathsf{c}} = \mathcal{M} imes \mathsf{H}^1(\mathsf{L}, \mathbb{R}/\mathbb{Z})$$

special Lagrangians with flat U(1)-connections on them.

Let ${\mathcal M}$ be the moduli spaces of deformations of L. Consider the enlarged moduli space

$$\mathcal{M}^{\mathsf{c}} = \mathcal{M} imes H^1(L, \mathbb{R}/\mathbb{Z})$$

special Lagrangians with flat U(1)-connections on them.

Then $T_{L,\nabla}\mathcal{M}^c \simeq H^1(L,\mathbb{R}) \oplus H^1(L,\mathbb{R})$. Put the obvious almost complex structure and metric.

Let ${\mathcal M}$ be the moduli spaces of deformations of L. Consider the enlarged moduli space

$$\mathcal{M}^{\mathsf{c}} = \mathcal{M} imes H^1(L, \mathbb{R}/\mathbb{Z})$$

special Lagrangians with flat U(1)-connections on them.

Then $T_{L,\nabla}\mathcal{M}^c \simeq H^1(L,\mathbb{R}) \oplus H^1(L,\mathbb{R})$. Put the obvious almost complex structure and metric.

Theorem

 \mathcal{M}^{c} is Kähler. The fibres of $\mathcal{M}^{c} \rightarrow \mathcal{M}$ are Lagrangian.

If u_1, \ldots, u_m are the local affine coords on \mathcal{M} and x_1, \ldots, x_m corresponding coords on the fibres, let

$$ilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$

Monge-Ampère revisited

If u_1, \ldots, u_m are the local affine coords on \mathcal{M} and x_1, \ldots, x_m corresponding coords on the fibres, let

$$\tilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$

Theorem

 $\tilde{\Omega}$ together with the Kähler structure on \mathcal{M}^{c} defines a Calabi-Yau structure if and only if ϕ obeys the Monge-Ampère equation.

Solutions of the Monge-Ampère equation define a special Lagrangian fibration with flat fibres (semi-flat). Converse also true (up to monodromy).

If u_1,\ldots,u_m are the local affine coords on $\mathcal M$ and x_1,\ldots,x_m corresponding coords on the fibres, let

$$\tilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$

Theorem

 $\tilde{\Omega}$ together with the Kähler structure on \mathcal{M}^{c} defines a Calabi-Yau structure if and only if ϕ obeys the Monge-Ampère equation.

Solutions of the Monge-Ampère equation define a special Lagrangian fibration with flat fibres (semi-flat). Converse also true (up to monodromy).

If we start with X a semi-flat fibration then \mathcal{M}^c deserves to be called the mirror of X

THANK YOU