Moduli of special Lagrangian and coassociative submanifolds

David Baraglia

The Australian National University
Canberra, Australia

July 18, 2010
Why look at special Lagrangian / coassociative submanifolds?
Why look at special Lagrangian / coassociative submanifolds?

- they are minimal submanifolds
Introduction

Why look at special Lagrangian / coassociative submanifolds?

- they are minimal submanifolds
- nice moduli space of deformations
Why look at special Lagrangian / coassociative submanifolds?

- they are minimal submanifolds
- nice moduli space of deformations
- the SYZ conjecture: “mirror symmetry is T-duality” nice geometric picture of mirror symmetry X, \tilde{X} are dual special Lagrangian fibrations over the same base
Why look at special Lagrangian / coassociative submanifolds?

- they are minimal submanifolds
- nice moduli space of deformations
- the SYZ conjecture: “mirror symmetry is T-duality” nice geometric picture of mirror symmetry X, \tilde{X} are dual special Lagrangian fibrations over the same base
- Dualities in M-theory: SYZ-like conjectures involving coassociative fibrations of G_2-manifolds.
Let (X, g) be a Riemannian manifold
Let \((X, g)\) be a Riemannian manifold.

Definition

A compact oriented submanifold \(S \to X\) is called a *minimal submanifold* if it is a stationary point for the volume functional

\[
\text{vol}(S) = \int_S d\text{vol}_S
\]
A classical result

Theorem

Let X be Kähler. Any compact complex submanifold of X is minimal.
A classical result

Theorem

Let X be Kähler. Any compact complex submanifold of X is minimal

Ex: A non-singular algebraic variety in \mathbb{CP}^n is a minimal submanifold
A classical result

Theorem

Let X be Kähler. Any compact complex submanifold of X is minimal.

Ex: A non-singular algebraic variety in \mathbb{CP}^n is a minimal submanifold.

Harvey and Lawson found a generalization of this result using calibrations.
Calibrations

Let \((X, g)\) be a Riemannian manifold.
Let \((X, g)\) be a Riemannian manifold.

Definition

A *calibration* \(\phi\) on \(X\) is a \(p\)-form such that

- \(\phi\) is closed: \(d\phi = 0\),
- for any \(x \in X\) and oriented \(p\)-dimensional subspace \(V \subseteq T_x X\), we have \(\phi|_V = \lambda d\text{vol}\), where \(\lambda \leq 1\) and \(d\text{vol}\) is the volume form on \(V\) with respect to \(g\).
Let \((X, g)\) be a Riemannian manifold.

Definition

A *calibration* \(\phi\) on \(X\) is a \(p\)-form such that

- \(\phi\) is closed: \(d\phi = 0\),
- for any \(x \in X\) and oriented \(p\)-dimensional subspace \(V \subseteq T_xX\), we have \(\phi|_V = \lambda d\text{vol}\), where \(\lambda \leq 1\) and \(d\text{vol}\) is the volume form on \(V\) with respect to \(g\).

Subspaces such that \(\lambda = 1\) are called *calibrated subspaces*.
Let \((X, g)\) be a Riemannian manifold.

Definition

A *calibration* \(\phi\) on \(X\) is a \(p\)-form such that

- \(\phi\) is closed: \(d\phi = 0\),
- for any \(x \in X\) and oriented \(p\)-dimensional subspace \(V \subseteq T_x X\), we have \(\phi|_V = \lambda dvol\), where \(\lambda \leq 1\) and \(dvol\) is the volume form on \(V\) with respect to \(g\).

Subspaces such that \(\lambda = 1\) are called *calibrated subspaces.*

An oriented \(p\)-submanifold \(S \subseteq X\) is a *calibrated submanifold* of \(X\) with respect to \(\phi\) if the tangent spaces of \(S\) are calibrated subspaces: \(\phi|_S = dvol_S\).
Calibrations

Theorem

Let S be a compact calibrated submanifold. S has minimal volume amongst all submanifolds representing the same homology class.
Calibrations

Theorem

Let S be a compact calibrated submanifold. S has minimal volume amongst all submanifolds representing the same homology class.

Proof.

Let S' be a compact submanifold with $[S] = [S']$. Then since ϕ is closed

$$\text{vol}(S) = \int_S \phi = \int_{S'} \phi \leq \int_{S'} d\text{vol}_{S'} = \text{vol}(S').$$
Why is this useful?
Why is this useful?

The minimal submanifold equation $f : S \to X$ is second order in f.

The calibrated submanifold condition $f^* \phi = dvol_S$ is first order in f.
Some examples

\((X, \omega)\) Kähler, then \(\omega^k\) is a calibration \(\implies\) complex submanifolds
Some examples

(X, ω) Kähler, then ω^k is a calibration \implies complex submanifolds

Calabi-Yau: special Lagrangians (soon)
Some examples

\((X, \omega)\) Kähler, then \(\omega^k\) is a calibration \(\implies\) complex submanifolds

Calabi-Yau: special Lagrangians (soon)

\(G_2\)-manifolds: associative and coassociative submanifolds (next time: coassociative)
(X, ω) Kähler, then ω^k is a calibration \implies complex submanifolds

Calabi-Yau: special Lagrangians (soon)

G_2-manifolds: associative and coassociative submanifolds (next time: coassociative)

$\text{Spin}(7)$-manifolds: Cayley submanifolds
Some examples

\((X, \omega)\) Kähler, then \(\omega^k\) is a calibration \(\implies\) complex submanifolds

Calabi-Yau: special Lagrangians (soon)

\(G_2\)-manifolds: associative and coassociative submanifolds (next time: coassociative)

\(\text{Spin}(7)\)-manifolds: Cayley submanifolds

Special Lagrangian and coassociative have a nice deformation theory (unobstructed). Associative and Cayley do not (obstructed). (See: McLean)
A Calabi-Yau manifold is a Riemannian manifold with holonomy in $SU(n)$. On a Kähler manifold X with trivial canonical bundle ($K = \mathbb{C}^n, 0$), every Kähler class admits a unique Calabi-Yau metric.
A *Calabi-Yau manifold* is a Riemannian manifold with holonomy in $SU(n)$.

On a Kähler manifold X with trivial canonical bundle ($K = \bigwedge^{n,0} T^*X$), every Kähler class admits a unique Calabi-Yau metric.
SU(n)-structures

Reduction of structure to SU(n) can be defined using only

- A non-degenerate 2-form ω
- A complex n-form $\Omega = \Omega_1 + i\Omega_2$ which is locally decomposable: $\Omega = \theta_1 \wedge \cdots \wedge \theta_n$

such that:

$$\omega \wedge \Omega = 0, \quad \Omega \wedge \Omega = \omega_n \text{ or } i\omega_n,$$

$\omega(I, \cdot)$ is positive with respect to the almost complex structure determined by Ω.

David Baraglia (ANU)
Moduli of special Lagrangian and coassociative
July 18, 2010 13 / 31
Reduction of structure to $SU(n)$ can be defined using only

- A non-degenerate 2-form ω
- A complex n-form $\Omega = \Omega_1 + i\Omega_2$ which is locally decomposable: $\Omega = \theta_1 \wedge \cdots \wedge \theta_n$

such that:

- $\omega \wedge \Omega = 0$,
- $\Omega \wedge \overline{\Omega} = \omega^n$ or $i\omega^n$,
- $\omega(\cdot, \cdot)$ is positive with respect to the almost complex structure determined by Ω.

$SU(n)$-structures
The $SU(n)$-structure is torsion free if and only if $d\omega = 0$, $d\Omega = 0$.
The $SU(n)$-structure is torsion free if and only if $d\omega = 0$, $d\Omega = 0$.

In this case there is a torsion free $SU(n)$-connection ∇ such that $\nabla \omega = 0$, $\nabla \Omega = 0$.

Precisely the requirement for a Calabi-Yau manifold.
The form $\Omega_1 = \text{Re}(\Omega)$ is a calibration.

Definition

A submanifold $L \rightarrow X$ of a Calabi-Yau manifold is *special Lagrangian* if it is a calibrated submanifold with respect to Ω_1.

Note: can replace Ω by $e^{-i\theta}\Omega$ and Ω_1 by $\cos(\theta)\Omega_1 + \sin(\theta)\Omega_2$.

Equivalent condition: $\omega|_L = 0$, $\Omega_2|_L = 0$ (hence the "Lagrangian" part of the name).
Special Lagrangians

The form $\Omega_1 = \text{Re}(\Omega)$ is a calibration.

Definition

A submanifold $L \rightarrow X$ of a Calabi-Yau manifold is *special Lagrangian* if it is a calibrated submanifold with respect to Ω_1.

Note: can replace Ω by $e^{-i\theta}\Omega$ and Ω_1 by $\cos(\theta)\Omega_1 + \sin(\theta)\Omega_2$.

Equivalent condition: $\omega|_L = 0$, $\Omega_2|_L = 0$ (hence the “Lagrangian” part of the name)
what makes special Lagrangians so special?
what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways
what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways

special Lagrangians are much more rigid - we will see that compact ones have a finite dimensional moduli space of deformations of dimension b_1.
what makes special Lagrangians so special?

Lagrangians are squishy - it is possible to deform a Lagrangian in many ways

special Lagrangians are much more rigid - we will see that compact ones have a finite dimensional moduli space of deformations of dimension \(b^1 \).

special Lagrangian tori exist in \(b^1(T^n) = n \) dimensional families - just the right number for a torus fibration
Let $L \rightarrow X$ be a *compact* special Lagrangian.
First order deformations

Let $L \to X$ be a *compact* special Lagrangian then $NL \cong T^*L$:
First order deformations

Let $L \rightarrow X$ be a compact special Lagrangian
then $NL \cong T^*L$:

$$X \mapsto i_X \omega|_L$$
First order deformations

Let \(L \rightarrow X \) be a *compact* special Lagrangian
then \(NL \cong T^*L \):

\[X \mapsto i_X \omega \big|_L \]

given a normal vector field \(X \), we can deform \(L \) in the direction \(X \)
Let $L \rightarrow X$ be a *compact* special Lagrangian then $NL \simeq T^*L$:

$$X \mapsto i_X \omega |_L$$

given a normal vector field X, we can deform L in the direction X

Theorem (McLean)

A normal vector field X represents a first order deformation through special Lagrangian submanifolds iff

$$i_X \omega |_L$$ *is a harmonic 1-form on L.***
Moduli space of deformations

No obstructions to extending a first order deformation to an actual family
Moduli space of deformations

No obstructions to extending a first order deformation to an actual family

We get a smooth moduli space \mathcal{M} of deformations of L through special Lagrangians
Moduli space of deformations

No obstructions to extending a first order deformation to an actual family

We get a smooth moduli space \mathcal{M} of deformations of L through special Lagrangians

the tangent space $T_L\mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^1(L, \mathbb{R})$
No obstructions to extending a first order deformation to an actual family

We get a smooth moduli space \mathcal{M} of deformations of L through special Lagrangians

the tangent space $T_{L}\mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^{1}(L, \mathbb{R})$

$$\dim(\mathcal{M}) = b^{1}(L)$$
No obstructions to extending a first order deformation to an actual family

We get a smooth moduli space \mathcal{M} of deformations of L through special Lagrangians

the tangent space $T_L\mathcal{M}$ of \mathcal{M} at L is naturally isomorphic to $\mathcal{H}^1(L, \mathbb{R})$

$$\dim(\mathcal{M}) = b^1(L)$$

notation: for $X \in T_L\mathcal{M}$ let $\theta_X = i_X \omega|_L$ be the corresponding harmonic form
\mathcal{M} has a natural metric:
\(\mathcal{M} \) has a natural metric:

Let \(X, Y \in T_L \mathcal{M} \)

define \(g_\mathcal{M} \) on \(\mathcal{M} \):

\[
g_\mathcal{M}(X, Y) = \int_L \theta_X \wedge \star \theta_Y
\]

called the \(L^2 \) moduli space metric
Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in \mathcal{M}$.

Theorem

α is closed, so (locally) we have a function $u: \mathcal{M} \to H_1(L, \mathbb{R})$ such that $\alpha = du: u^*(x) = \alpha(x) = [\theta x]$.

These are natural local affine coordinates $u_1, \ldots, u_b(L)$ on \mathcal{M}.

David Baraglia (ANU) Moduli of special Lagrangian and coassociative July 18, 2010 22 / 31
Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in \mathcal{M}$

get a (locally defined) $H^1(L, \mathbb{R})$-valued 1-form α:

$T \mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R})$
Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in \mathcal{M}$

get a (locally defined) $H^1(L, \mathbb{R})$-valued 1-form α:

$$T\mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R})$$

Theorem

α is closed, so (locally) we have a function

$$u : \mathcal{M} \to H^1(L, \mathbb{R})$$

such that $\alpha = du$:

$$u_*(X) = \alpha(X) = [\theta_X]$$
Local moduli space structure

For small enough deformations we can canonically identify cohomology of each submanifold with a fixed $L \in \mathcal{M}$

get a (locally defined) $H^1(L, \mathbb{R})$-valued 1-form α:

\[T\mathcal{M} \ni X \mapsto \alpha(X) = [\theta_X] \in H^1(L, \mathbb{R}) \]

Theorem

α is closed, so (locally) we have a function

\[u : \mathcal{M} \to H^1(L, \mathbb{R}) \]

such that $\alpha = du$:

\[u_*(X) = \alpha(X) = [\theta_X] \]

These are natural local affine coordinates $u_1, \ldots, u_{b^1(L)}$ on \mathcal{M}
Local moduli space structure

So far we have used ω but not Ω_2. Repeat for Ω_2:
So far we have used ω but not Ω_2. Repeat for Ω_2:

Have an isomorphism: $NL \rightarrow \bigwedge^{n-1} T^* L: X \mapsto i_X \Omega_2$
So far we have used ω but not Ω_2. Repeat for Ω_2:

Have an isomorphism: $NL \to \bigwedge^{n-1} T^*L: X \mapsto i_X \Omega_2$

X is a first order deformation if and only if $i_X \Omega_2$ is a harmonic $(n-1)$-form. In fact $i_X \Omega = \star \theta_X$.
So far we have used ω but not Ω_2. Repeat for Ω_2:

Have an isomorphism: $NL \rightarrow \bigwedge^{n-1} T^*L: X \mapsto i_X \Omega_2$

X is a first order deformation if and only if $i_X \Omega_2$ is a harmonic $(n-1)$-form. In fact $i_X \Omega = \star \theta_X$.

By same reasoning we get local affine coordinates $\nu: \mathcal{M} \rightarrow H^{n-1}(L, \mathbb{R})$.
We have two sets of affine coordinates:

\[u : \mathcal{M} \rightarrow H^1(L, \mathbb{R}) \text{ and } v : \mathcal{M} \rightarrow H^{n-1}(L, \mathbb{R}). \]
We have two sets of affine coordinates:

\(u : \mathcal{M} \to H^1(L, \mathbb{R}) \) and \(v : \mathcal{M} \to H^{n-1}(L, \mathbb{R}) \).

Combine them: \(F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \).
We have two sets of affine coordinates:

\[u : \mathcal{M} \to H^1(L, \mathbb{R}) \] and \[v : \mathcal{M} \to H^{n-1}(L, \mathbb{R}). \]

Combine them: \[F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}). \]

Why do this?
We have two sets of affine coordinates:
\[u : \mathcal{M} \to H^1(L, \mathbb{R}) \quad \text{and} \quad v : \mathcal{M} \to H^{n-1}(L, \mathbb{R}). \]

Combine them:
\[F = (u, v) : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}). \]

Why do this?

The space \(V = H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \) has an obvious \((n, n)\)-metric \(\langle , \rangle \) and symplectic structure \(\omega \):

\[
\langle (a, b), (c, d) \rangle = \frac{1}{2} \int_L a \wedge d + b \wedge c
\]

\[
\omega((a, b), (c, d)) = \int_L a \wedge d - b \wedge c.
\]
Local moduli space structure

Theorem (Hitchin)

\[F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \] sends \(\mathcal{M} \) to a Lagrangian submanifold. Moreover the natural \(L^2 \) metric on \(\mathcal{M} \) is the induced metric.
Local moduli space structure

Theorem (Hitchin)

\[F : M \rightarrow H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \] sends \(M \) to a Lagrangian submanifold. Moreover the natural \(L^2 \) metric on \(M \) is the induced metric.

Let \(u_1, \ldots, u_m \) be coords for \(H^1(L, \mathbb{R}) \), \((m = b^1(L)) \).
Let \(v_i, \ldots, v_m \) be dual coordinates for \(H^{n-1}(L, \mathbb{R}) \).
The \((n, n)\) metric has form \(\sum_i du_i dv_i \).
Local moduli space structure

Theorem (Hitchin)

\[F : \mathcal{M} \to H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \] sends \(\mathcal{M} \) to a Lagrangian submanifold. Moreover the natural \(L^2 \) metric on \(\mathcal{M} \) is the induced metric.

Let \(u_1, \ldots, u_m \) be coords for \(H^1(L, \mathbb{R}) \), \((m = b^1(L)) \).

Let \(v_1, \ldots, v_m \) be dual coordinates for \(H^{n-1}(L, \mathbb{R}) \).

The \((n, n) \) metric has form \(\sum_i du_i dv_i \).

\(\mathcal{M} \) is a Lagrangian submanifold, so locally there is a function \(\phi \) such that \(v_i = \frac{\partial \phi}{\partial u_i} \).
Local moduli space structure

Theorem (Hitchin)

\[F : M \rightarrow H^1(L, \mathbb{R}) \oplus H^{n-1}(L, \mathbb{R}) \text{ sends } M \text{ to a Lagrangian submanifold.} \]

Moreover the natural \(L^2 \) metric on \(M \) is the induced metric.

Let \(u_1, \ldots, u_m \) be coords for \(H^1(L, \mathbb{R}) \), \((m = b^1(L)) \).
Let \(v_i, \ldots, v_m \) be dual coordinates for \(H^{n-1}(L, \mathbb{R}) \).

The \((n, n) \) metric has form \(\sum_i du_i dv_i \).

\(M \) is a Lagrangian submanifold, so locally there is a function \(\phi \) such that \(v_i = \frac{\partial \phi}{\partial u_i} \).

Therefore the \(L^2 \)-metric looks like

\[g_M = \sum_{i,j} \frac{\partial^2 \phi}{\partial u_i \partial u_j} du_i du_j \]
\(\mathcal{M} \) is a Lagrangian, but is it in some sense “special”?

Let

\[
W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m
\]

\[
W_2 = dv_1 \wedge \cdots \wedge dv_m.
\]

Then some linear combination

\[
c_1 W_1 + c_2 W_2
\]

vanishes on \(\mathcal{M} \) if and only if \(\phi \) obeys the Monge-Ampère equation:

\[
\det(\text{Hess}(\phi)) = \text{const}
\]

However this does not hold for all moduli spaces. More on this soon.
\[M \] is a Lagrangian, but is it in some sense “special”?

Let \[W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m \]
\[W_2 = dv_1 \wedge \cdots \wedge dv_m. \]
\mathcal{M} is a Lagrangian, but is it in some sense “special”?

Let $W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m$
$W_2 = dv_1 \wedge \cdots \wedge dv_m$.

Then some linear combination $c_1 W_1 + c_2 W_2$ vanishes on \mathcal{M} if and only if ϕ obeys the Monge-Ampère equation:

$$\det(\text{Hess}(\phi)) = \text{const}$$
\(M \) is a Lagrangian, but is it in some sense “special”?

Let \(W_1 = du_1 \wedge du_2 \wedge \cdots \wedge du_m \)
\(W_2 = dv_1 \wedge \cdots \wedge dv_m. \)

Then some linear combination \(c_1 W_1 + c_2 W_2 \) vanishes on \(M \) if and only if \(\phi \) obeys the Monge-Ampère equation:

\[
\det(\text{Hess}(\phi)) = \text{const}
\]

However this does not hold for all moduli spaces. More on this soon.
Suppose we have a fibration $X \to B$ by compact special Lagrangians.
Suppose we have a fibration $X \to B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville’s theorem on integrable systems).
Suppose we have a fibration $X \to B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville’s theorem on integrable systems).

$b_1(\mathbb{T}^n) = n$, so all possible deformations are fibres of $X \to B$. Neglecting singularities, B identifies with the moduli of deformations: $B \simeq \mathcal{M}$
Suppose we have a fibration $X \rightarrow B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville’s theorem on integrable systems).

$b^1(T^n) = n$, so all possible deformations are fibres of $X \rightarrow B$. Neglecting singularities, B identifies with the moduli of deformations: $B \simeq \mathcal{M}$

The corresponding harmonic 1-forms must be pointwise linearly independent (since the normal vector fields are).
Suppose we have a fibration $X \to B$ by compact special Lagrangians. The (non-singular) fibres must be tori (Liouville’s theorem on integrable systems).

$b^1(T^n) = n$, so all possible deformations are fibres of $X \to B$. Neglecting singularities, B identifies with the moduli of deformations: $B \cong \mathcal{M}$

The corresponding harmonic 1-forms must be pointwise linearly independent (since the normal vector fields are).

Conversely:

Theorem (Bryant)

Let g be a metric on T^n such that every non-zero harmonic 1-form is non-vanishing. Then (T^n, g) appears as a fibre in a special Lagrangian fibration. This is a local result: the total space need not be compact or complete.
Let \mathcal{M} be the moduli spaces of deformations of L. Consider the enlarged moduli space

$$\mathcal{M}^c = \mathcal{M} \times H^1(L, \mathbb{R}/\mathbb{Z})$$

special Lagrangians with flat $U(1)$-connections on them.
Let \mathcal{M} be the moduli spaces of deformations of L. Consider the enlarged moduli space

$$
\mathcal{M}^c = \mathcal{M} \times H^1(L, \mathbb{R}/\mathbb{Z})
$$

special Lagrangians with flat $U(1)$-connections on them.

Then $T_{\mathcal{L}, \nabla} \mathcal{M}^c \simeq H^1(L, \mathbb{R}) \oplus H^1(L, \mathbb{R})$. Put the obvious almost complex structure and metric.
Monge-Ampère revisited

Let \mathcal{M} be the moduli spaces of deformations of L. Consider the enlarged moduli space

$$\mathcal{M}^c = \mathcal{M} \times H^1(L, \mathbb{R}/\mathbb{Z})$$

special Lagrangians with flat $U(1)$-connections on them.

Then $T_{L, \nabla} \mathcal{M}^c \simeq H^1(L, \mathbb{R}) \oplus H^1(L, \mathbb{R})$. Put the obvious almost complex structure and metric.

Theorem

\mathcal{M}^c is Kähler. The fibres of $\mathcal{M}^c \to \mathcal{M}$ are Lagrangian.
If u_1, \ldots, u_m are the local affine coords on \mathcal{M} and x_1, \ldots, x_m corresponding coords on the fibres, let

$$\tilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$
Monge-Ampère revisited

If u_1, \ldots, u_m are the local affine coords on \mathcal{M} and x_1, \ldots, x_m corresponding coords on the fibres, let

$$\tilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$

Theorem

\[\tilde{\Omega}\] together with the Kähler structure on \mathcal{M}^c defines a Calabi-Yau structure if and only if ϕ obeys the Monge-Ampère equation.

Solutions of the Monge-Ampère equation define a special Lagrangian fibration with flat fibres (semi-flat). Converse also true (up to monodromy).
Monge-Ampère revisited

If u_1, \ldots, u_m are the local affine coords on \mathcal{M} and x_1, \ldots, x_m corresponding coords on the fibres, let

$$\tilde{\Omega} = d(u_1 + ix_1) \wedge \cdots \wedge d(u_n + ix_n)$$

Theorem

$\tilde{\Omega}$ together with the Kähler structure on \mathcal{M}^c defines a Calabi-Yau structure if and only if ϕ obeys the Monge-Ampère equation.

Solutions of the Monge-Ampère equation define a special Lagrangian fibration with flat fibres (semi-flat). Converse also true (up to monodromy).

If we start with X a semi-flat fibration then \mathcal{M}^c deserves to be called the mirror of X.

THANK YOU